Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)
\(\)Ta có
\(x^2+x+5=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\)
=> Bất phương trình đàu tiên sai, hệ bất phương trình sai
b)
\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)\left(x+2\right)>0\\\left(x-3\right)\left(3x-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{3}\\x\ge3\end{matrix}\right.\end{matrix}\right.\)
c)
\(\left\{\begin{matrix} -x^2+4x-7< 0\\ x^2-2x-1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x^2-4x+7>0\\ x^2-2x+1\geq 2\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (x-2)^2+3>0\\ (x-1)^2-2\geq 0\end{matrix}\right.\Leftrightarrow (x-1)^2-2\geq 0\Leftrightarrow \left[\begin{matrix} x-1\geq \sqrt{2}\\ x-1\leq -\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\geq \sqrt{2}+1\\ x\leq 1-\sqrt{2}\end{matrix}\right.\)
d)
\(\left\{\begin{matrix} -2x^2-5x+4< 0\\ -x^2-3x+10>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x^2+5x-4>0\\ (2-x)(x+5)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2(x+\frac{5}{4})^2-\frac{57}{8}>0\\ (2-x)(x+5)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (x+\frac{5}{4}-\frac{\sqrt{57}}{4})(x+\frac{5}{4}+\frac{\sqrt{57}}{4})>0\\ (2-x)(x+5)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x>\frac{-5+\sqrt{57}}{4}\\ x< \frac{-5-\sqrt{57}}{4}\end{matrix}\right.\\ -5< x< 2\end{matrix}\right.\) \(\Rightarrow \left[\begin{matrix} -5< x< \frac{-5-\sqrt{57}}{4}\\ \frac{\sqrt{57}-5}{4}< x< 2\end{matrix}\right.\)
a)
\(\left\{\begin{matrix} 2x^2+9x+7>0\\ x^2+x-6< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+1)(2x+7)>0\\ (x-2)(x+3)< 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x>-1\\ x< \frac{-7}{2}\end{matrix}\right.\\ -3< x< 2\end{matrix}\right.\Rightarrow -1< x< 2\)
b) \(\left\{\begin{matrix} 2x^2+x-6>0\\ 3x^2-10x+3\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (2x-3)(x+2)>0\\ (x-3)(3x-1)\geq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x>\frac{3}{2}\\ x< -2\end{matrix}\right.\\ \left[\begin{matrix} x\geq 3\\ x\leq \frac{1}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow \left[\begin{matrix} x\geq 3\\ x< -2\end{matrix}\right.\)
a/ \(x^2+2x-15< 0\Rightarrow-5< x< 3\)
TH1: \(m=-1\) ko thỏa mãn
TH2: \(m>-1\Rightarrow x\ge\frac{3}{m+1}\)
Để BPT đã cho có nghiệm thì: \(\frac{3}{m+1}< 3\)
\(\Leftrightarrow m+1>1\Rightarrow m>0\)
TH3: \(m< -1\Rightarrow x\le\frac{3}{m+1}\)
Để BPT có nghiệm \(\Rightarrow\frac{3}{m+1}>-5\)
\(\Leftrightarrow3< -5\left(m+1\right)\)
\(\Leftrightarrow5m< -8\Rightarrow m< -\frac{8}{5}\)
Vậy để BPT đã cho có nghiệm thì \(\left[{}\begin{matrix}m>0\\m< -\frac{8}{5}\end{matrix}\right.\)
b/ \(x^2-3x-4\le0\Leftrightarrow-1\le x\le4\)
Xét bpt \(\left(m-1\right)x\ge2\)
TH1: \(m=1\) ko thỏa mãn
TH2: \(m>1\Rightarrow x\ge\frac{2}{m-1}\)
Để BPT có nghiệm \(\Rightarrow4\le\frac{2}{m-1}\)
\(\Rightarrow2\left(m-1\right)\le1\Rightarrow m\le\frac{3}{2}\)
Kết hợp điều kiện \(\Rightarrow1< m\le\frac{3}{2}\)
TH3: \(m< 1\Rightarrow x\le\frac{2}{m-1}\)
Để BPT có nghiệm \(\Rightarrow\frac{2}{m-1}\ge-1\)
\(\Leftrightarrow2\le1-m\Rightarrow m\le-1\)
Vậy để BPT đã cho có nghiệm thì: \(\left[{}\begin{matrix}m\le-1\\1< m\le\frac{3}{2}\end{matrix}\right.\)
2: Điểm rơi... đẹp!
Áp dụng bất đẳng thức AM - GM:
\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+4\ge4b\\c^2+9\ge6c\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2+14\ge2\left(a+2b+3c\right)=28\).
\(\Rightarrow a^2+b^2+c^2\ge14\).
Đẳng thức xảy ra khi a = 1; b = 2; c = 3.
1: Ta có \(y^2\ge6-x+x-2=4\Rightarrow y\ge2\).
Đẳng thức xảy ra khi x = 6 hoặc x = 2
\(y^2\le2\left(6-x+x-2\right)=8\Rightarrow y\le2\sqrt{2}\).
Đẳng thức xảy ra khi x = 4.
a: \(x\in\left(-1;2\right)\)
b: \(x\in[8;10)\cup\left[25;30\right]\)
c: \(x\in\left(-\infty;-5\right)\cup[7;+\infty)\)
\(A=4ab+8bc+6ca=a\left(b+c\right)+3b\left(a+c\right)+5c\left(a+b\right)\)
\(=a\left(3-a\right)+3b\left(3-b\right)+5c\left(3-c\right)\)
\(=\dfrac{81}{4}-\left[\left(a-\dfrac{3}{2}\right)^2+3\left(b-\dfrac{3}{2}\right)^2+5\left(c-\dfrac{3}{2}\right)^2\right]\)
Đặt \(x=\left|a-\dfrac{3}{2}\right|;y=\left|b-\dfrac{3}{2}\right|;z=\left|c-\dfrac{3}{2}\right|\)
\(\Rightarrow x+y+z\ge\left|a+b+c-\dfrac{9}{2}\right|=\dfrac{3}{2}\)
Khi đó \(A=\dfrac{81}{4}-\left(x^2+3y^2+5z^2\right)\)
Áp dụng bđt bunhiacopxki: \(\left(x^2+3y^2+5z^2\right)\left(\dfrac{45^2}{46^2}+\dfrac{3.15^2}{46^2}+\dfrac{5.9^2}{46^2}\right)\ge\left(\dfrac{45}{46}x+\dfrac{45}{46}y+\dfrac{45}{46}z\right)^2\ge\left(\dfrac{135}{92}\right)^2\)
\(\Leftrightarrow x^2+3y^2+5z^2\ge\dfrac{135}{92}\)
\(\Rightarrow A\le\dfrac{81}{4}-\dfrac{135}{92}=\dfrac{432}{23}\)
Dấu = xảy ra\(\Leftrightarrow x=3y=5z\) và \(x+y+z=\dfrac{3}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{45}{46}\\y=\dfrac{15}{46}\\z=\dfrac{9}{46}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{12}{23}\\b=\dfrac{27}{23}\\c=\dfrac{30}{23}\end{matrix}\right.\)
Vậy...