Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
`a, M(x) = 2x^3 + x^2 + 5 - 3x +3x^2 - 2x^3 - 4x^2 +1`
`M(x)= (2x^3 - 2x^3)+(x^2+3x^2)-3x+(5+1) `
`M(x)= 4x^2-3x+6`
`b,` giá trị của `M(x)` tại `x=0`
`-> M(0)=2*0^3 + 0^2 + 5 - 3*0 +3*0^2 - 2*0^3 - 4*0^2 +1`
`M(0)= 0+0+5-0+0+0-0-0+1 = 5+1=6`
Giá trị của `M(x)` tại `x=1`
`-> M(1)=2*1^3 + 1^2 + 5 - 3*1 +3*1^2 - 2*1^3 - 4*1^2 +1`
`M(1)=2+1+5-3+3-2-4+1 = (2-2)+(1+1)+5-(3-3)-4=2+5-4=7-4=3`
`c,` Giá trị của `P(x)` là cái gì bạn nhỉ?
Bài 1 ( a )
\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)
\(=-x^3-2x^2+5x-7\)
\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)
\(=-3x^4+x^3+10x^2-7\)
Bài 1 ( b )
\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)
\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)
\(=3x^4-2x^2+15x-14\)
\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)
\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)
\(=-3x^4-2x^3-5x\)
a: P(x)=-x^3+2x^3-x^2+3x^2+x-1=x^3+2x^2+x-1
Q(x)=-3x^3+2x^3-x^2+3x-4x+3=-x^3-x^2-x+3
b: H(x)=P(x)+Q(X)
=x^3+2x^2+x-1-x^3-x^2-x+3
=x^2+2
c: H(-1)=H(1)=1+2=3
d: H(x)=x^2+2>=2>0 với mọi x
=>H(x) ko có nghiệm
\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)
\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x+6\)
\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)
\(=6x^4-4x^3+10x^2-11x-4\)
`a)` P(x)= 2x³ + x² +5 -3x + 3x²- 2x³ - 4x² + 1
`P(x) = (2x^3 -2x^3) + (x^2 +3x^2 -4x^2)-3x +(1+5)`
`P(x) = -3x +6`
Vậy `P(x) = -3x +6`
b) cho `P(x) = 0`
`<=> -3x+6 =0`
`-3x =-6`
`=> x =2`
cho P(x) =1
`=> -3x +6 =1`
`<=> -3x =-5`
`x =5/3`