Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
De dang chung minh duoc \(\Delta MAX=\Delta MDP,\Delta NBY=\Delta NCP\)
suy ra M la trung diem XP, N la trung diem PY
xet tam giac XPY co YM,XN la duong trung tuyen => T la trong tam tam giac XPY
=> PT di qua trung diem XY (1)
Mat khac MN // XY ( duong trung binh) (2)
va M , N la trung diem AD,BC co dinh (3)
tu (1),(2),(3) suy ra PT di qua trung diem MN co dinh
Chuc ban hoc tot
Upin : t nghĩ phần cuối của m từ ( 1 ), ( 2 ) và ( 3 ) => ... như thế không thuyết phục lắm
t nghĩ là m nên nói bổ đề hình thang
còn không thì gọi giao điểm PT với MN và XY là K và H
xong dùng Ta-lét để chứng minh MK = KN
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
A B C M N I D E J
Gọi J là trung điểm cạnh BC, MN cắt AJ tại I.
Vì MADB và MAEC là các hình bình hành nên \(BD=MA=CE,BD||MA||CE\)
Suy ra BDEC là hình bình hành, suy ra N là trung điểm BE. Do đó NJ là đường trung bình \(\Delta BEC\)
Suy ra \(NJ||CE||AM,NJ=\frac{1}{2}CE=\frac{1}{2}AM\)
Theo định lí Thales \(\frac{IJ}{IA}=\frac{NJ}{MA}=\frac{1}{2}\). Vì AJ là trung tuyến của \(\Delta ABC\) nên I là trọng tâm \(\Delta ABC\)
Vậy MN đi qua I cố định.
Vì ABCD là hình bình hành => AB//CD mà AM thuộc AB; CN thuộc CD => AM//CN
Mà AM=CN
=> AMCN là hình bình hành (tứ giác có cặp cạnh đối // và = nhau là hình bình hành)
=> AC và MN là đường chéo của hbh AMCN
Gọi O là giao của AC và MN => O là trung điểm của AC và MN (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
A cố định C cố định => O cố định => MN luôn đi qua O cố định