K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

Vì ABCD là hình bình hành => AB//CD mà AM thuộc AB; CN thuộc CD => AM//CN

Mà AM=CN

=> AMCN là hình bình hành (tứ giác có cặp cạnh đối // và = nhau là hình bình hành)

=> AC và MN là đường chéo của hbh AMCN

Gọi O là giao của AC và MN => O là trung điểm của AC và MN (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

A cố định C cố định => O cố định => MN luôn đi qua O cố định

27 tháng 2 2020

De dang chung minh duoc \(\Delta MAX=\Delta MDP,\Delta NBY=\Delta NCP\)

suy ra M la trung diem XP, N la trung diem PY

xet tam giac XPY co YM,XN la duong trung tuyen => T la trong tam tam giac XPY

=> PT di qua trung diem XY (1)

Mat khac MN // XY ( duong trung binh)  (2)

va M , N la trung diem AD,BC co dinh  (3)

tu (1),(2),(3) suy ra PT di qua trung diem MN co dinh

Chuc ban hoc tot

27 tháng 2 2020

Upin : t nghĩ phần cuối của m từ ( 1 ), ( 2 ) và ( 3 ) => ... như thế không thuyết phục lắm

t nghĩ là m nên nói bổ đề hình thang 

còn không thì gọi giao điểm PT với MN và XY là K và H

xong dùng Ta-lét để chứng minh MK = KN 

29 tháng 10 2021

a: Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

29 tháng 6 2021

A B C M N I D E J

Gọi J là trung điểm cạnh BC, MN cắt AJ tại I.

Vì MADB và MAEC là các hình bình hành nên \(BD=MA=CE,BD||MA||CE\)

Suy ra BDEC là hình bình hành, suy ra N là trung điểm BE. Do đó NJ là đường trung bình \(\Delta BEC\)

Suy ra \(NJ||CE||AM,NJ=\frac{1}{2}CE=\frac{1}{2}AM\)

Theo định lí Thales \(\frac{IJ}{IA}=\frac{NJ}{MA}=\frac{1}{2}\). Vì AJ là trung tuyến của \(\Delta ABC\) nên I là trọng tâm \(\Delta ABC\)

Vậy MN đi qua I cố định.