K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Ta có: BI\(\perp\)AD

CK\(\perp\)AD

Do đó: BI//CK

Xét ΔBIA vuông tại I và ΔCKD vuông tại K có

BA=CD

\(\widehat{BAI}=\widehat{CDK}\)(ΔMAB=ΔMDC)

Do đó: ΔBIA=ΔCKD

=>AI=KD

c: Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

Ta có: AB//DC

AB\(\perp\)AC

Do đó: DC\(\perp\)AC

=>\(\widehat{ACD}=90^0\)

Xét ΔBAC vuông tại A và ΔDCA vuông tại C có

BA=DC

AC chung

Do đó: ΔBAC=ΔDCA

=>BC=AD

12 tháng 5 2019

Bạn tham khảo 

https://olm.vn/hoi-dap/detail/4685026342.html

9 tháng 7 2019

Câu hỏi của Bùi Phương Thảo - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

18 tháng 4 2018
các bạn giúp tớ
18 tháng 4 2018

I đâu ra thế bạn ơi :v 

6 tháng 8 2017

góc B= 60 độ

6 tháng 8 2017

Giả sử tam giác ABC vuông tại A óc góc B = 60 độ

Để AI = IM thì I là trung điểm của AM

=> BI là trung tuyến cũng là đường cao

=> tam giác ABM cân tại B có góc B = 60 độ 

=> tam giác ABM đều

Tương tự cho MK và KD.

Vậy khi tam giác ABC vuông tại A với AB < AC và góc B = 60 độ thì AI = IM = MK = KD.

4 tháng 5 2020

Bài này bạn tự kẻ hình giúp mình nha!

1. Xét tam giác AMB và tam giác CMD có:

AM = CM ( M là trung điểm của AC )

AMB = CMD ( 2 góc đối đỉnh )

BM = DM (gt)

=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)

=> BAM = DCM ( 2 góc tương ứng)

=> DCM = 90o  => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )

2. 

Xét tam giác AMD và tam giác CMB có:

AM = CM ( Theo 1.)

AMD = CMB ( 2 góc đối đỉnh )

DM = BM (gt)

=> tam giác AMD = tam giác CMB ( c.g.c)

=> AD = BC (2 cạnh tương ứng) (dpcm)

=> ADM = CBM (2 góc tương ứng)

Mà góc ADM và và góc CBM ở vị trí so le trong

=> AD // BC (dpcm)

3. Xét tam giác AEN và tam giác BCN có:

AN=BN ( N là trung điểm của AB)

ANE = BNC ( 2 góc đối đỉnh )

NE = NC (gt)

=> Tam giác AEN = tam giác BCN ( c.g.c)

=> AE = BC ( 2 cạnh tương ứng )        (1)

=>  EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC         (2)

Theo 2. ta có :  +) AD=BC        (3)

                         +) AD // BC      (4)

Từ (1) và (3) Suy ra AE = AD  (5)

Từ (2) và (4) Suy ra A,E,D thẳng hàng    (6)

Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)

5 tháng 5 2020

sorry bn nha

mk lm xong rùi

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12cm và HC=16 cm. Tính chu vi tam giác ABC.Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NAvuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)a) Chứng minh: NA = NB.b) Tam giác OAB là tam giác gì? Vì sao?c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.Chứng minh: ND = NE.d) Chứng minh ON ⊥ DEBài 4:...
Đọc tiếp

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12
cm và HC=16 cm. Tính chu vi tam giác ABC.
Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NA
vuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)
a) Chứng minh: NA = NB.
b) Tam giác OAB là tam giác gì? Vì sao?
c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.
Chứng minh: ND = NE.
d) Chứng minh ON ⊥ DE
Bài 4: Cho tam giác ABC cân tại A, Kẻ AH⊥BC (H ∈ BC)
a) Chứng minh góc ∠BAH = ∠CAH
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC.
c) Kẻ HE ⊥ AB, HD ⊥ AC . Chứng minh AE = AD.
d) Chứng minh ED // BC.
Bài 5: (3,5 điểm)
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh ∆BMC cân.
c) Chứng minh AB + NC &gt; 2.DA.
Bài 6: (3,5 điểm)
Cho ∆ABC vuông tại A (AB &lt; AC). Tia phân giác của góc ABC cắt AC tại D,
DN⊥BC tại N.
a) Chứng minh ∆ABD = ∆NBD.

3

b) Gọi K là giao điểm của hai đường thẳng BA và ND. Chứng minh ∆BKC cân.
Vẽ EH ⊥BC tại H. Chứng minh BC + AH &gt; EK + AB.
Bài 7: (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài đoạn BC.
b) Vẽ BCAH tại H. Trên HC lấy D sao cho HD = HB.
Chứng minh: AB = AD.
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ACED .
d) Chứng minh BD &lt; AE.
Bài 5: (3 điểm) Cho ΔABC vuông tại A, kẻ phân giác BD của Bˆ (D thuộc AC), kẻ
BDAH (H thuộc BD), AH cắt BC tại E.
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: BCED .
c) Chứng minh: AD &lt; DC.
d) Kẻ BCAK (K thuộc BC). Chứng minh: AE là phân giác của KAˆC .
Bài 4: (3,5 điểm) Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC &gt; 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM
3
2
AK

. Gọi N là giao điểm của

CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.

giúp mk với

1
10 tháng 3 2022

tú wibu:)

20 tháng 4 2015

A B C N M H K I D E

a) Vì BI; CK cùng vuông góc với AM => BI // CK => góc MCK = góc MBI ( 2 góc so le trong)

mà có MB = MC (do M là TĐ của BC)

=> tam giác vuông MCK = MBI (cạnh huyền - góc nhọn)

=> BI = CK ( 2 canh t.ư)

+) tam giác BCK = CBI ( vì:  BC chung; góc BCK = góc CBI; CK = BI)

=> BK = CI (2 cạnh t.ư)

và góc KBC = góc ICB ( 2 góc t.ư) mà 2 góc này ở vị trí SLT => BK // CI

b) Gọi E là trung điểm của MC 

xét tam giác vuông MKC có: KE là trung tuyến ứng với cạnh huyền MC => EK = MC/ 2

Xét tam giác vuông MNC có: NE là trung tuyến ứng với cạnh huyền MC => NE = MC/2

Áp dụng bất đẳng thức tam giác trong tam giác KNE có: KN < EK + NE = MC/ 2 + MC/ 2 = MC 

vậy KN < MC

c) +) ta luôn có: IM = MK (theo câu a) => M là trung điểm của IK 

    +)  Nếu AI = IM  mà A; I; M thẳng hàng => I là trung điểm của AM => BI là trung tuyến của tam giác BAM 

mặt khác, BI vuông góc với AM 

=> BI vừa là đường cao vừa là đường trung tuyến trong tam giác BAM => tam giác BAM cân tại B

=> BA = BM mà BM = MA (do AM là trung tuyến ứng với cạnh huyền BC)

=> tam giác BAM đều => góc BAM = 60o

    +) ta có : MA = MD (gt) mà MA = IM + IA ; IM = MK 

=> MD = MK + IA mà MD = MK + KD (do MI = MK < MA = MD => K nằm giữa M và D)

=> IA = KD 

=> nếu AI = IM => AI = IM = MK = KD

vậy để AI = IM = MK = KD thì tam giác ABC là tam giác vuông có góc B = 60o

d) +) Tam giác MAC = tam giác MDB ( MA = MD ; góc AMC = góc DMB  do đối đỉnh; MC = MB)

=> góc DBC = góc BCA mà 2 góc này ở vị trí SLT => BD // AC

lại có MN vuông góc với AC => MN vuông góc với BD => MN là là đường cao của tam giác BMD

+) Xét tam giác BMD có: BI ; DH ; MN là 3 đường cao => chúng đồng quy => đpcm

29 tháng 3 2017

dien h la

  1 * 9 9 * 9 = 999 

dap so 999

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

sao toàn hỏi  toán 7 vậy

15 tháng 2 2019

mik đăng cho Hiếu làm

với lại thầy cho mik nhiều bài toán 7 cx khó nên lên đây ns mấy em làm 

đỡ làm chứ

có lợi đôi bên hehehe