Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta coa : tam giác ABD vuông tại A
AB^2 + AD^2= BD^2 ( định lý pitago)
AD^2= BD^2 - AB^2 (1)
Ta có tam giác ADC vuông tại D
AD^2 + DC^2 = AC^2 ( định lý pitago)
AD^2 = AC^2 - DC^2 (2)
Từ (1) và (2) ta có:
BD^2 - AB^2 = AC^2- DC^2
DC^2 - AB^2 = AC^2 - BD^2
Bài 1)
Trên AD lấy E sao cho AE = AB
Xét ∆ACE và ∆ACB ta có :
AC chung
DAC = BAC ( AC là phân giác)
AB = AE (gt)
=> ∆ACE = ∆ACB (c.g.c)
=> CE = CB (1)
=> AEC = ABC = 110°
Mà AEC là góc ngoài trong ∆EDC
=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)
=> ECD = 110 - 70
=> EDC = 40°
Xét ∆ EDC :
DEC + EDC + ECD = 180 °
=> CED = 180 - 70 - 40
=> CED = 70°
=> CED = EDC = 70°
=> ∆EDC cân tại C
=> CE = CD (2)
Từ (1) và (2) :
=> CB = CD (dpcm)
b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°
Vẽ BO vuông góc AC tại O
DO phải cắt một trong 2 đoạn thẳng DC,DA. Giả sử BO cắt CD
Trên BO lấy E sao cho CD=CE
Tứ giác ABCE có:
AB2+CE2=BC2+AE2AB2+CE2=BC2+AE2
⇒AB2+CD2=BC2+AE2⇒AB2+CD2=BC2+AE2
Mà ⇒AB2+CD2=BC2+AD2⇒AB2+CD2=BC2+AD2
⇒D≡E⇒D≡E
⇒⇒ BD vuông góc AC.
⇒SABCD=BD.AC2⇒SABCD=BD.AC2
Nếu BD.AC2=AC2+BD24⇔(AC−BD)2=0BD.AC2=AC2+BD24⇔(AC−BD)2=0
Đẳng thức này chỉ xảy ra khi AC=BD
Kéo dài DA và CB lần lượt về phía A và B cắt nhau tại E
Xét tam giác DCE có \(\widehat{DEC}\) = 1800 - (\(\widehat{EDC}\) + \(\widehat{ECD}\)) = 1800- 900 = 900
⇒\(\Delta\)DEC vuông tại E
Xét \(\Delta\)AEB Theo pytago ta có: AE2 + BE2 = AB2
Tương tự ta có: DE2 + CE2 = DC2
Cộng vế với vế ta có: AE2 + BE2 + DE2 + CE2 = AB2+DC2
AE2 + CE2+BE2+DE2 = AB2+DC2 (1)
Xét \(\Delta\)AEC theo pytago ta có: AE2+ CE2 = AC2
Tương tự ta có: BE2 + DE2 = BD2
Cộng vế với vế ta có: AE2 + CE2 + BE2+ DE2 = AC2 + BD2 (2)
Từ (1) và (2) ta có: AC2 + BD2 = AB2 + DC2(đpcm)