K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

\(B=1+5y-y^2=-\left(y^2-5y-1\right)\)

\(=-\left(y^2-2.\frac{5}{2}x+\frac{25}{4}-\frac{29}{4}\right)\)

\(=-\left[\left(y-\frac{5}{2}\right)^2-\frac{29}{4}\right]\)

\(=-\left(y-\frac{5}{2}\right)^2+\frac{29}{4}\le\frac{29}{4}\)

11 tháng 9 2019

\(C=4x-x^2+1=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left[\left(x-2\right)^2-5\right]\)

\(=-\left(x-2\right)^2+5\le5\)

9 tháng 7 2018

a)  \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1=-2\)

b)  \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2.7+37=100\)

c)  \(C=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10=25\)

9 tháng 7 2018

a) \(A=x^2+2xy+y^2-4x-4v+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1=-2\)

13 tháng 8 2019

a) \(A=x^2-4y^2+x-2y\)

\(=\left(x-2y\right)\left(x+2y\right)+\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y+1\right)\)

Thay vào 

b) tương tự

13 tháng 8 2019

Tại x=1 ; y=2 thay vào BT ta có 

A= \(1-4.2^2+1-2.2=\)-18

ý b) cũng thay v thoy 

10 tháng 9 2018

a) Ta có:

\(A=x^2+2xy+y^2-4x-4y+1\)

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 vào A

\(A=3^2-4.3+1\)

\(A=9-12+1\)

\(A=-2\)

b) Sửa đề:

\(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(B=x^2+2x+y^2-2y-2xy+37\)

\(B=\left(x^2+y^2+1+2x-2y-2xy\right)+36\)

\(B=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào B

\(B=\left(7+1\right)^2+36\)

\(B=100\)

c) Ta có:

\(C=x^2+4y^2-2x+10+4xy-4y\)

\(C=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(C=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào C

\(C=5^2-2.5+10\)

\(C=25-10+10\)

\(C=25\)

23 tháng 6 2017

a, \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3

\(\Leftrightarrow A=9-12+1=-2\)

Vậy A = -2 khi x + y = 3

b, \(B=x^2+4y^2-2x+10+4xy-4y\)

\(=x^2+4xy+4y^2-2x-4y+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 có:
\(B=25-10+10=25\)

Vậy B = 25 khi x + 2y = 5

a, Với x-y=7 thì

\(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2.7+37\)

\(=49+14+37=100\)

Vậy A=100

b, Với x+2y=5 thì

\(B=x^2+4y^2-2x+10+4xy-4y\)

\(=x^2+4y^2-2x+2x+4y+4xy-4y=x^2+4y^2+4xy\)

\(=x^2+2.x.2y+\left(2y\right)^2=\left(x+2y\right)^2=5^2=25\)

Vậy B=25