K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

bài này là giải phương trình hả bn ?

28 tháng 2 2018

1.

<=> 7 - 2x - 4 = -x - 4

<=> -2x + x = -4 -7 + 4

<=> -x = -7

<=> x = 7

       Vậy S = { 7 }

2.

<=> \(\frac{2\left(3x-1\right)}{6}\)\(\frac{3\left(2-x\right)}{6}\)

<=> 2( 3x - 1 ) = 3( 2 - x )

<=> 6x -2 = 6 - 3x

<=> 6x + 3x = 6 + 2

<=> 9x = 8

<=> x = \(\frac{8}{9}\)

       Vậy S =  \(\left\{\frac{8}{9}\right\}\)

3.

<=> \(\frac{6x+10}{3}-\frac{x}{2}=5-\frac{3x+3}{4}\)

<=> \(\frac{4\left(6x+10\right)}{12}-\frac{6x}{12}=\frac{60}{12}-\frac{3\left(3x+3\right)}{12}\)

<=> 4( 6x + 10 ) - 6x = 60 - 3( 3x + 3 )

<=> 24x + 40 - 6x = 60 - 9x -9

<=> 18x + 40 = 51 - 9x

<=> 18x + 9x = 51 - 40

<=> 27x = 11

<=> x = \(\frac{11}{27}\)

       Vậy S = \(\left\{\frac{11}{27}\right\}\)

<=> 

24 tháng 7 2019

Khó phết chứ chả đùa

24 tháng 7 2019

Bài 1:

1.Đặt \(A=x^2+y^2-3x+2y+3\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)

Hay \(A\ge\frac{-1}{4};\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)

                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

17 tháng 6 2016

\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x=a\)

=> \(\left(a-6\right)\left(a+6\right)=a^2-36\ge-36\)

\(x\left(x+5\right)=0\) thì biểu thức nhỏ nhất

<=> x = 0 hoặc x = -5

20 tháng 3 2018

\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

đặt \(\left(x^2+x\right)=t\)  ta có 

\(t^2+4t-12=0\)

\(\Leftrightarrow t^2+6t-2t-12=0\)

\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)

khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường 

30 tháng 11 2016

\(A=\frac{\left|x-1\right|+\left|x\right|-x}{3x^2+4x+1}=\frac{1-x-x-x}{3x^2+3x+x+1}=\frac{1-3x}{\left(x+1\right)\left(3x+1\right)}\)

\(B=\frac{\left|2x-1\right|+x}{3x^2-22x+7}=\frac{1-2x+x}{3x^2-21x-x+7}=\frac{1-x}{\left(x-7\right)\left(3x-1\right)}\)

1 tháng 6 2017

A=(1/x-2 - (2x/(2-x)(2+x) - 1/2+x) ) *(2-x)/x 
=(1/x-2 - x^2+5x-2/(2-x)(2+x))*2-x/x 
=(-x^3-4x^2+12x/(x-2)(2-x)(2+x))*2-x/x 
= - x(x-2)(x+6)(2-x)/x(x-2)(2-x)(2+x) 
= - x+6/x+2