Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
gọi 3 số tự nhiên liên tiếp đó là a; a + 1; a + 2
ta có: a(a + 1) + (a + 1)(a + 2) + a(a + 2) = 242
⇒ a2 + a + a2 + a + 2a + 2 + a2 + 2a = 242
⇒ 3a2 + 6a = 240
⇒ a2 + 2a = 80
⇒ a2 + 2a - 80 = 0
⇒ a2 - 8a + 10a - 80 = 0
⇒ a(a - 8) + 10(a - 8) = 0
⇒ (a - 8) (a + 10) = 0
\(\Rightarrow\left[{}\begin{matrix}a-8=0\\a+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=8\\a=-10\end{matrix}\right.\)
mà a ∈ N ⇒ a = 8
vậy 3 số tự nhiên liên tiếp cần tìm là 8;9;10
\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)
2x - 3y + 4z = 5, 34
=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)
Vậy ...
b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)
\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)
\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)
Vậy ...
\(\left(3y+1\right)\left(3y+2\right)-2\)
\(=3y\cdot\left(3y+2\right)+1\cdot\left(3y+2\right)-2\)
\(=3y\cdot3y+2\cdot3y+3y+2-2\)
\(=9y^2+9y\)
\(=3\left(3y^2+3y\right)⋮3\)
\(\Rightarrow\left(3y+1\right)\left(3y+2\right)-2⋮3\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{2}=\frac{y+3}{4}\)\(=\frac{z+5}{6}\)\(=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)
\(=\frac{2x+2+3y+9+4z+20}{4+12+24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{40}\)
\(=\frac{9+31}{40}=\frac{40}{40}=1\)
Cứ thế là tìm x+1 rồi tìm x
y+3 y
x+5 z
Ta có \(\frac{x}{3}=\frac{-y}{5}\)=> \(x=\frac{-3y}{5}\)
Thay \(x=\frac{-3y}{5}\)vào A, ta có:
\(\frac{5\left(\frac{-3y}{5}\right)^2+3y^2}{10\left(\frac{-3y}{5}\right)^2-3y^2}=\frac{5\left(\frac{9y^2}{25}\right)+3y^2}{10\left(\frac{9y^2}{25}\right)-3y^2}=\frac{\frac{45y^2}{25}+3y^2}{\frac{90y^2}{25}-3y^2}=\frac{\frac{45y^2+75y^2}{25}}{\frac{90y^2-75y^2}{25}}=\frac{\frac{120y^2}{25}}{\frac{25y^2}{25}}\)= \(\frac{120y^2}{25}.\frac{25}{25y^2}=\frac{120y^2}{25y^2}=4,8\)
Vậy giá trị của A là 4,8 khi \(\frac{x}{3}=\frac{-y}{5}\)
Có: \(\frac{x}{2}=\frac{y}{3}\)
=> \(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)
=> \(\hept{\begin{cases}4x=16\\3y=18\end{cases}}\)
=> \(\hept{\begin{cases}x=4\\y=6\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{4x}{8}=\frac{3y}{9}\) và \(4x-3y=-2\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)
\(\Leftrightarrow4x=8.2=16\Leftrightarrow16\div4=4\)
\(\Leftrightarrow3y=2.9=18\Leftrightarrow y=18\div3=6\)
Vậy \(x=4;y=6\)
Mik trả lời ở dưới r