Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo câu a, b, c tại đây nhé.
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
d) Ta thấy EB = AE
Mà theo quan hệ giữa đường vuông góc với đường xiên thì AC < AE
Vậy nên AC < EB.
bạn tự vẽ hình nha
Xét tg AEC và tg AEK có:
góc ACE= góc AEK ( = 90 độ )
AE : cạnh chung
góc A1 = góc A2 ( AE là phân giác )
=> tg AEC= tg AEK ( cạnh huyền - góc nhọn )
=> AC= AK ( 2 cạnh tương ứng )
b) Vì AC= AK ( theo a)
=> tg ACK cân tại A
Vì trong 1 tg cân đường phân giác đồng thời là đường trung tuyến nên Ả là đường trung trực của CK
c) Xét tg AEK và tg BEK có:
góc AKE= góc BKE ( = 90 độ )
KE : cạnh chung
góc KAE = góc KBE ( đồng vị )
=> tg AEK= tg BEK ( c-g-c)
=> KA= KB
a/ Tam giác ABE vuông tại A và tam giác BKE vuông tại K có
ABE=KBE(BE là p/g ABK)
BE là cạnh chung
Tam giác ABE=Tam giác BKE (ch-gn)
=>BA=BK hay tam giác ABK cân tại B nên đường phân giác BE đồng thòi là đường cao. Vậy BE vuông góc với AK.
b/Tam giác ABK cân tại B có B=60 độ nên là tam giác đều =>KB=KA=AB. Tương tụ ta có tam giác KBC cân tại K => KC=KA
Vậy KB=KC
c/EC>AB
Ta có EK là trung trực BC nên EB=EC, mà EB>AB do tam giác ABE vuông tại A nên EC>AB
d/ Gọi giao điểm AB và CD là N. Ta cần chứng minh N,E,K thẳng hàng để 3 đường thắng AB,EK,CD đi qua 1 điểm.
Thật vậy, tam giác AEN và tam giác KEC có
NAE=EKC (=90 độ)
EA=EK (c/mt)
EN=EC(tam giác BNC có phân giác BD đồng thời là đường cao nên đồng thời là trung trức CN)
Vậy tam giác AEN=tam giác KEC (ch-gn)
=> AEN=KEC
2 góc này ở vị trí đối đỉnh nên N,E,K thắng hàng. Vậy N,E,K thẳng hàng =>AB,EK,DC cùng đi qua 1 điểm
Cho tam giác ABC vuông ở C có góc A bằng 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB ( K thuộc AB ). Kẻ BD vuông góc với tia AE ( D thuộc AE). Chứng minh :
- AC=AK và AE vuoogn góc với CK
- KA=KB
- EB>AC
- Ba đường thẳng AC,BD,KE cùng đi qua 1 điểm
M.n giúp mình nha :))) Cảm ơn nhiều ^^
Mình ngại vẽ hình qá : )
a) Xét tam giác vuông ABC ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow60^o+\widehat{B}+90^o\Rightarrow\widehat{B}=90^o-60^o=30^o\)
Vì AD là tia phân giác
\(\Rightarrow\widehat{CAE}=\widehat{KAE}=30^o\)
Xét hai tam giác vuông AEK và BEK có:
EK là cạnh chung
\(\widehat{EAK}=\widehat{EBK}\left(cmt\right)\)
\(\Rightarrow\Delta AEK=\Delta BEK\)( cạnh góc vuông góc nhọn kề )
\(\Rightarrow AK=KB\)( cặp cạnh tương ứng bằng nhau )
b) Vì tam giác AEK = tam giác BEK ( cmt )
Suy ra AE = BE ( cặp cạnh tương ứng bằng nhau )
Xét hai tam giác vuông ACE và BDE có:
AE = BE ( cmt )
\(\widehat{AEC}=\widehat{BED}\)( đối đỉnh )
\(\Rightarrow\Delta ACE=\Delta BDE\)( cạnh huyền góc nhọn )
\(\Rightarrow CE=ED\)( cặp cạnh tương ứng )
Mà AE = BE ( cmt )
\(\Rightarrow CE+BE=ED+AE\)
\(\Rightarrow AD=BC\)
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK và EC=EK
=>AE là đường trung trực của CK
=>AD là đường trung trực của CK
b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
A B C D E K H
a) gọi giao điểm của AE và CK là H
xét 2 tam giác vuông AKE và ACE có:
AE(chung)
KAE=CAE(gt)
=> ΔAKE=ΔACE(CH-GN)
=> AC=AK
b)xét ΔAKH và ΔACH có:
AC=AK(theo câu a)
AH(chung)
KAH=CAH(gt)
=> ΔAKH=ΔACH(c.g.c)
=>\(\begin{cases}HK=HC\\AHK=AHC\end{cases}\)
mà AHK+AHC=\(180^o\)
=> AHK=AHC=\(180^o:2=90^o\)
ta có: AE_|_CK và HK=HC
=> AE là đường trung trực của CK
c)
ΔABC vuông tại C có góc A=\(60^o\) => góc B=\(30^o\)
=>AC=1/2 AB
=>AK=1/2AB
ta có: BK=AB-AK=AB-1/2AB=1/2AB
=> AK=BK
d)ΔABC vuông tại C có A=\(60^o\)
=> AC=AK=BK=1/2AB(theo câu c)
ta có Δ AKE vuông tại K=> BK<BE
=> AC<BE(đfcm)
Cho tam giác ABC vuông tại C có góc A = 60 độ và đường phân giác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K ( K thuộc AB) . Kẻ BD vuông góc với AE tại D ( D thuộc AE ) . chứng minh
a) tam giác ACE bằng tam giác AKE
b) AE là đường trung trực của đoạn CK
c) KA=KB
d) EB > EC
giống không ạ ?
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó; ΔACE=ΔAKE
Suy ra: AC=AK
b: Ta có: ΔACE=ΔAKE
nên EC=EK
mà AC=AK
nên AE là đường trung trực của CK