Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ hình:
Áp dụng định lý góc ngoài trong các tam giác ABD và ACD ta có:
Xét △ABC có: A + B + C = 180o
=> A + 70o + 40o = 180o
=> A = 70o
Vì AD là phân giác của A
=> BAD = DAC = A/2 = 70o / 2 = 35o
Xét △ABC có: DAC + C + ADC = 180o
=> 35o + 40o + ADC = 180o
=> ADC = 105o
Ta có: ADC + ADB = 180o (2 góc kề bù)
=> 105o + ADB = 180o
=> ADB = 75o
Trong ΔABD ta có ∠D1 là góc ngoài tại đỉnh D
∠D1 = ̂B + ∠A1 (tính chất góc ngoài của tam giác)
Trong ΔADC ta có ∠D2 là góc ngoài tại đỉnh D
∠D2 = ̂C + ∠A2 (tính chất góc ngoài của tam giác)
Ta có: ∠B > ∠C (gt); ∠A1 = ∠A2 (gt)
⇒∠D1 - ∠D2 = (B + ∠A1) - (C + ∠A2) = ∠B - ∠C = 20o
Lại có: ∠D1 + ∠D2 = 180o (hai góc kề bù)
⇒∠D1 = (180o + 20o):2 = 100o
⇒∠D1 = (100o - 20o) = 80o
Tam giác ABC có:
góc BAC + góc B + góc C = 180 độ
=> góc BAC + 80 độ + 30 độ = 180 độ
=> góc BAC = 180 độ - ( 80 độ + 30 độ) =70 độ
Vì AD là tia phân giác của góc BAC nên:
góc BAD = góc BAC / 2 = 70/2 = 35 độ
Vì góc ADC là góc ngoài của tam giác ADB nên:
góc ADC = góc B + góc BAD
= 80 độ + 35 độ =115 độ
Ta có: góc ADB + góc ADC = 180 độ ( kề bù)
=> góc ADB = 180 độ - góc ADC
= 180 độ - 115 độ = 65 độ
Vậy góc ADC = 115 độ, góc ADB = 65 độ
chúc em học tốt !