K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để A=B thì \(\dfrac{3}{3x+1}-\dfrac{2}{3x-1}=\dfrac{x-5}{\left(3x-1\right)\left(3x+1\right)}\)

=>9x-3-6x-3=x-5

=>3x-6=x-5

=>2x=1

=>x=1/2

13 tháng 1 2023

hai biểu thức A,B có cùng một giá trị

\(=>A=B\\ đk:\left\{{}\begin{matrix}x\ne\dfrac{1}{3}\\x\ne-\dfrac{1}{3}\end{matrix}\right.\\ =>\dfrac{3}{3x+1}+\dfrac{2}{1-3x}=\dfrac{x-5}{9x^2-1}\\ =>\dfrac{3}{3x+1}+\dfrac{-2}{3x-1}=\dfrac{x-5}{\left(3x-1\right)\left(3x+1\right)}\\ =>\dfrac{3\left(3x-1\right)-2\left(3x+1\right)}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{x-5}{\left(3x-1\right)\left(3x+1\right)}\\ =>9x-3-6x-2=x-5\\ =>3x-5=x-5\\ =>3x-x=-5+5\\ =>2x=0\\ =>x=0\left(t/m\right)\)

21 tháng 3 2020

ko làm mà muốn ăn thì ăn đầu buồi ăn cứt ,nha!

21 tháng 3 2020

\(ĐKXĐ:x\ne\pm\frac{1}{3}\)

Để A = B

\(\Leftrightarrow\frac{3}{3x+1}+\frac{2}{1-3x}=\frac{x-5}{9x^2-1}\)

\(\Leftrightarrow\frac{3\left(3x-1\right)-2\left(3x+1\right)-\left(x-5\right)}{\left(3x+1\right)\left(3x-1\right)}=0\)

\(\Leftrightarrow9x-3-6x-2-x+5=0\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy để \(A=B\Leftrightarrow x=0\)

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)

=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)

=>18x-12>=12x+12

=>6x>=24

=>x>=4

b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)

=>\(x^2+2x+1< x^2-2x+1\)

=>4x<0

=>x<0

c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì

\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)

=>\(2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

=>x<=4

4 tháng 5 2017

a) giải phương trình

\(\dfrac{2x^2-3x-2^{ }}{_{ }x^2-4}\) = 2

=>\(\dfrac{2x^2-3x-2}{x^2-4}\) = \(\dfrac{2\left(x^2-4\right)}{x^2-4}\)

=>2x2 - 3x - 2 = 2(x2 - 4)

<=>2x2 -3x - 2 = 2x2 - 8

<=>2x2 - 2x2 - 3x = -8 + 2

<=>-3x = -6

<=> x = 2

Vậy không tồn tại giá trị nào của x thỏa mãn điều kiện của bài toán

b) Ta phải giải phương trình

\(\dfrac{6x-1}{3x+2}\) = \(\dfrac{2x+5}{x-3}\)

=>x = \(\dfrac{-7}{38}\)

c) Ta phải giải phương trình

\(\dfrac{y+5}{y-1}\) - \(\dfrac{y+1}{y-3}\) = \(\dfrac{-8}{\left(y-1\right)\left(y+1\right)}\)

không tồn tại giá trị nào của y thỏa mãn điều kiện của bài toán

18 tháng 4 2021

a, ĐK : \(x\ne1;2;3;4;5\)

b, \(\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{1}{x}-\dfrac{1}{x-1}+\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}\)

\(=\dfrac{1}{x}-\dfrac{1}{x-5}=\dfrac{x-5-x}{x\left(x-5\right)}=\dfrac{-5}{x\left(x-5\right)}\)

a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)\le5x^2-7\left(2x-3\right)\)

\(\Leftrightarrow2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

hay x<=4

b: \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}>=\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)

=>2(6x+1)+3(x+3)>=6(5x+3)+4(12-5x)

=>12x+2+3x+9>=30x+18+48-20x

=>15x+11>=10x+66

=>5x>=55

hay x>=11

a: Thay x=5 vào B, ta được:

\(B=\dfrac{5-1}{5-3}=\dfrac{4}{2}=2\)

b:  \(A=\dfrac{2x^2+6x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-1}{\left(x+3\right)\left(x-3\right)}\)