Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
a) Ta có : \(x\ne1\)
Vì \(x\inℤ\Rightarrow\frac{3-x}{x-1}\inℤ\Leftrightarrow\hept{\begin{cases}3-x\inℤ\\x-1\inℤ\end{cases}}\)
Mà \(\frac{3-x}{x-1}=\frac{-x+3}{x-1}=\frac{-x+1+2}{x-1}=\frac{-\left(x-1\right)+2}{x-1}=-1+\frac{2}{x-1}\)
Lại có : \(-1\inℤ\Rightarrow E\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\Leftrightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1\in\left\{\pm1;\pm2\right\}\)
Lập bảng xét 2 trường hợp ta có :
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
Vậy \(x\in\left\{2;0;3;-1\right\}\)
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
Để E nguyên thì x - 2 phải là ước của 3
Ta có:
x - 2 = 1 => x = 1 + 2 = 3
x - 2 = -1 => x = -1 + 2 = 1
x - 2 = 3 => x = 3 + 2 = 5
x - 2 = -3 => x = -3 + 2 = -1
Để E nhỏ nhất thì E = -3 => x = -1
a, \(E=\frac{5-x}{x-2}=\frac{3+2-x}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)
Để E có giá trị nguyên <=> x - 2 \(\in\)Ư(3) = {1;-1;3;-3}
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, Để E có GTNN <=> \(\frac{3}{x-2}\) có GTNN <=> \(\frac{3}{2-x}\)có GTLN <=> 2 - x có GTNN <=> x = 1 (vì x \(\in\)Z; x < 2)
Lúc đó GTNN của E = \(\frac{3}{1-2}-1=-4\)(khi x = 1)
a/ E = \(-\left(\frac{x-2-3}{x-2}\right)=-1+\frac{3}{x-2}\)Để E \(\in Z\)thì \(x-2=\left\{1,2,3,-1,-2,-3\right\}\)Thay lần lượt vào ta có
\(\frac{3}{3}=1\left(TM\right)\)\(x=1\Rightarrow x-2=1\Rightarrow x=3\)(TM) Lần lượt thay các số vào sẽ tìm được x
b/ Để E Min Thì E= \(\frac{3}{x-2}\)đạt GTNN vậy A= x-2 đạt GTLN Hay \(x-2\le2\)Vậy dấu "=" Xảy ra khi x= 4
Vậy E đạt GTNN = 1/2 tại x=4
\(E=\frac{3-x}{x-1}=\frac{1-x+2}{x-1}=-1+\frac{2}{x-1}\)
E \(\inℤ\Leftrightarrow x+1\inƯ\left(2\right)=\left\{1;-1:2;-2\right\}\)
=> \(x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)là giá trị cần tìm
Ta có: \(E=\frac{3-x}{x-1}=\frac{-\left(x-3\right)}{x-1}=\frac{-\left(x-1-2\right)}{x-1}=\frac{-\left(x-1\right)+2}{x-1}=\frac{2}{x-1}-1\)
Để E có giá trị nguyên thì \(\frac{2}{x-1}-1\) có giá trị nguyên
\(\Rightarrow\frac{2}{x-1}\) có giá trị nguyên
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1\right\}\)