K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

viết bằng công thức ở chỗ \(\sum\) đi bạn

29 tháng 3 2020

Bạn bảo cái gì cơ

a) Ta có: C=A+B

\(=x^2-2y^2+xy+1+x^2+y^2-x^2y^2-1\)

\(=2x^2-y^2-x^2y^2+xy\)

b) Ta có: C+A=B

nên C=B-A

\(=x^2+y^2-x^2y^2-1-x^2+2y^2-xy-1\)

\(=3y^2-x^2y^2-xy-2\)

9 tháng 3 2019

câu a là x-y =-2 nha mk viết nhầm

28 tháng 9 2021

=0 bạn nha

17 tháng 9 2019

Bài 1:

a) Ta có: \(2x=5y.\)

=> \(\frac{x}{y}=\frac{5}{2}\)

=> \(\frac{x}{5}=\frac{y}{2}\)\(x.y=90.\)

Đặt \(\frac{x}{5}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)

Có: \(x.y=90\)

=> \(5k.2k=90\)

=> \(10k^2=90\)

=> \(k^2=90:10\)

=> \(k^2=9\)

=> \(k=\pm3.\)

TH1: \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=3.2=6\end{matrix}\right.\)

TH2: \(k=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).5=-15\\y=\left(-3\right).2=-6\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(15;6\right),\left(-15;-6\right).\)

e) Ta có: \(\frac{x}{y}=\frac{4}{5}.\)

=> \(\frac{x}{4}=\frac{y}{5}\)\(x.y=20.\)

Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)

Có: \(x.y=20\)

=> \(4k.5k=20\)

=> \(20k^2=20\)

=> \(k^2=20:20\)

=> \(k^2=1\)

=> \(k=\pm1.\)

TH1: \(k=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=1.4=4\\y=1.5=5\end{matrix}\right.\)

TH2: \(k=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).4=-4\\y=\left(-1\right).5=-5\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(4;5\right),\left(-4;-5\right).\)

Chúc bạn học tốt!

17 tháng 9 2019

sao ngắn vậy bạn

27 tháng 3 2017

Đặt \(A=xy+x^2y^2+x^3y^3+...+x^{100}y^{100}\)

\(\Rightarrow A=xy+\left(xy\right)^2+\left(xy\right)^3+...+\left(xy\right)^{100}\)

\(\Rightarrow A=\left(-1\right)+1+\left(-1\right)+...+1\) ( 100 số hạng )

\(\Rightarrow A=\left[\left(-1\right)+1\right]+\left[\left(-1\right)+1\right]+...+\left[\left(-1\right)+1\right]\) ( 50 cặp số )

\(\Rightarrow A=0\)

Vậy A = 0