Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)
Bài 1:
a: \(A=\dfrac{3x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x-1}{x^2+x+1}\)
\(=\dfrac{3x+x^2-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
b: Để A=2 thì x-1=1/2
hay x=3/2
A) c/m MN//AD
Trong ▲AHD có:
AM=MH (M LÀ TRUNG ĐIỂM CỦA AH)
HN=ND (N " DH)
=> MN là đường trung bình của ▲AHD
=> MN//AD (đpcm )
B)
Ta có: MN//AD (cmt)
AD//BC (ABCD là hình chữ nhật)
Mà MN=1/2AD
THÔI! mình từ chiều đến giờ giải nhiều bài rồi. Nếu k wá quan trọng thì để ngày mai mình giải tiếp cho bạn (nhắn tin cho mình) máy bài này dễ ợt mà ¡ _ ¡ thui bye nhé ! :"(
a: Xét ΔADM và ΔCBN có
\(\widehat{ADM}=\widehat{CBN}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
Bài 3:
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ