K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

Có 2 cách là dùng phép chia và xét giá trị riêng: mình sẽ dùng cách chia bạn mún làm cách kia thì bảo mình

                      Bài làm

Mà mình nghĩ là tìm m chứ bạn

a) 

  10x^2-7x+m 2x-3 5x 10x^2-15x - 8x+m +4 8x-12 - m+12

Để \(f\left(x\right)⋮2x-3\)\(\Leftrightarrow m+12=0\)

                                    \(\Leftrightarrow m=-12\)

Vậy m=-12

11 tháng 8 2019

b) đầu bài có sai ko chia 3 á

11 tháng 9 2020

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

11 tháng 9 2020

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

9 tháng 5 2018

+)\(K\left(x\right)=P\left(x\right)+Q\left(x\right)=x^5+2x^2+7x^4-1-x^2-x^5+5-7x^4=x^2+4\)

+) \(K\left(x\right)=x^2+4\)

Ta có: \(x^2\ge0\forall x\Rightarrow x^2+4\ge4>0\)

--> Vô nghiệm

9 tháng 5 2018

chứng tỏ k(x) ko nghiệm mà bn

Bài 2: 

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)

Bài 3:

\(M=x^6-x^4-x^4+x^2+x^3-x\)

\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)

\(=8x^3-8x+8\)

\(=8\cdot8+8=72\)

2 tháng 10 2018

bài 1:

a) 2m(x-y) + x-y = 2m(x-y) + (x-y) = (2m+1)(x-y)

b) x(y-2) + y\(^2\) - 2y = x(y-2) + y(y-2) = (x+y)(y-2)

c) x\(^2\) +xy - 2x - 2y = x(x+y) - 2(x+y) = (x-2)(x+y)

d) x + x\(^2\) - x\(^3\) - x\(^4\) = x(1 + x - x\(^2\) - x\(^3\))

e) 2+2x-xy-y = 2(1+x) - y(x+1) = (2-y)(x+1)

f) x\(^2\) + 2y - 1 -2x + 1 - y\(^2\) = (x\(^2\) -2x+1) - (y\(^2\)-2y+1) = (x-1)\(^2\) - (y-1)\(^2\)

g) (x+1)\(^2\) -x-1 = (x+1)\(^2\) -(x+1) =(x+1)(x+1-1) = (x+1)x

Bài 3: 

\(P=x^2-4x+4+5=\left(x-2\right)^2+5>=5\)

Dấu = xảy ra khi x=2

Bài 4: 

a: \(=-\left(x^2-4x-5\right)\)

\(=-\left(x^2-4x+4-9\right)\)

\(=-\left(x-2\right)^2+9< =9\)

Dấu = xảy ra khi x=2

b: \(=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)

Dấu = xảy ra khi x=1/2

c: \(=x^2-6x+9+3=\left(x-3\right)^2+3>=3\)

Dấu '=' xảy ra khi x=3

Bài 1: Hãy chỉ ra các phương trình bậc nhất trong các phương trình sau: a) 1 + x = 0 b) x + x 2 = 0 c) 1 – 2t = 0 d) 3y = 0 e) 0x – 3 = 0 f) (x 2 + 1)(x – 1) = 0 g) 0,5x – 3,5x = 0 h) – 2x 2 + 5x = 0 Bài 2: Chứng tỏ rằng các phương trình sau đây vô nghiệm: a) 2(x + 1) = 3 + 2x b) | x | = –1 c) x 2 + 1 = 0 Bài 3: Tìm giá trị của k sao cho: a. Phương trình: 2x + k = x – 1 có nghiệm x = – 2. b. Phương trình: (2x + 1)(9x + 2k) – 5(x...
Đọc tiếp

Bài 1: Hãy chỉ ra các phương trình bậc nhất trong các phương trình sau:
a) 1 + x = 0 b) x + x 2 = 0 c) 1 – 2t = 0 d) 3y = 0
e) 0x – 3 = 0 f) (x 2 + 1)(x – 1) = 0 g) 0,5x – 3,5x = 0 h) – 2x 2 + 5x = 0
Bài 2: Chứng tỏ rằng các phương trình sau đây vô nghiệm:
a) 2(x + 1) = 3 + 2x b) | x | = –1 c) x 2 + 1 = 0
Bài 3: Tìm giá trị của k sao cho:
a. Phương trình: 2x + k = x – 1 có nghiệm x = – 2.
b. Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
Bài 4: Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương:
mx 2 – (m + 1)x + 1 = 0 và (x – 1)(2x – 1) = 0
Bài 5: Giải các phương trình sau:
1. a) 7x + 12 = 0 b) – 2x + 14 = 0
2. a) 3x + 1 = 7x – 11 b) 2x + x + 12 = 0 c) x – 5 = 3 – x d) 7 – 3x = 9 – x
e) 5 – 3x = 6x + 7 f) 11 – 2x = x – 1 g) 15 – 8x = 9 – 5x h) 3 + 2x = 5 + 2
3. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2) 2 – 8x 2 = 2(x – 2)(x 2 + 2x + 4)

2

Bài 2:

a) Ta có: \(2\left(x+1\right)=3+2x\)

\(\Leftrightarrow2x+2-3-2x=0\)

\(\Leftrightarrow-1< 0\)

Do đó: Phương trình \(2\left(x+1\right)=3+2x\) vô nghiệm

b) Ta có: \(\left|x\right|\ge0\forall x\)

\(\Rightarrow\left|x\right|+1\ge1>0\forall x\)

Do đó: Phương trình |x|+1=0 vô nghiệm

c) Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1>0\forall x\)

Do đó: Phương trình x2+1=0 vô nghiệm

Bài 3:

a) Thay x=-2 vào phương trình \(2x+k=x-1\), ta được

\(2\cdot\left(-2\right)+k=-2-1\)

\(\Leftrightarrow-4+k=-3\)

hay k=1

Vậy: Khi k=1 thì phương trình \(2x+k=x-1\) có nghiệm là x=-2

b) Thay x=2 vào phương trình \(\left(2x+1\right)\left(9x+2k\right)-5\left(x+2\right)=40\), ta được

\(\left(2\cdot2+1\right)\left(9\cdot2+2k\right)-5\left(2+2\right)=40\)

\(\Leftrightarrow5\cdot\left(18+2k\right)-20=40\)

\(\Leftrightarrow5\left(18+2k\right)=60\)

\(\Leftrightarrow18+2k=12\)

\(\Leftrightarrow2k=-6\)

hay k=-3

Vậy: Khi k=-3 thì phương trình \(\left(2x+1\right)\left(9x+2k\right)-5\left(x+2\right)=40\) có nghiệm là x=2

Bài 4:

Ta có: (x-1)(2x-1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S_1=\left\{1;\frac{1}{2}\right\}\)

Gọi S2 là tập nghiệm của phương trình \(mx^2-\left(m+1\right)x+1=0\)

Để hai phương trình (x-1)(2x-1)=0 và \(mx^2-\left(m+1\right)x+1=0\) là hai phương trình tương đương thì hai phương trình này phải có chung tập nghiệm

⇔S1=S2

hay \(S_2=\left\{1;\frac{1}{2}\right\}\)

Thay x=1 vào phương trình \(mx^2-\left(m+1\right)x+1=0\), ta được

\(m\cdot1^2-\left(m+1\right)\cdot1+1=0\)

\(\Leftrightarrow m-\left(m+1\right)=-1\)

\(\Leftrightarrow m-m-1=-1\)

hay -1=-1

Thay \(x=\frac{1}{2}\) vào phương trình \(mx^2-\left(m+1\right)x+1=0\), ta được

\(m\cdot\left(\frac{1}{2}\right)^2-\left(m+1\right)\cdot\frac{1}{2}+1=0\)

\(\Leftrightarrow\frac{1}{4}m-\left(m+1\right)\cdot\frac{1}{2}=-1\)

\(\Leftrightarrow\frac{1}{4}m-\frac{1}{2}m-\frac{1}{2}=-1\)

\(\Leftrightarrow\frac{-1}{4}m=-\frac{1}{2}\)

hay 1\(m=2\)

Vậy: Khi m=2 thì hai phương trình \(mx^2-\left(m+1\right)x+1=0\) và (x-1)(2x-1)=0 là hai phương trình tương đương

Bài 5:

1:

a) Ta có: 7x+12=0

⇔7x=-12

hay \(x=\frac{-12}{7}\)

Vậy: \(x=\frac{-12}{7}\)

b) Ta có: -2x+14=0

⇔-2x=-14

hay x=7

Vậy: x=7

2)

a) Ta có: 3x+1=7x-11

⇔3x+1-7x+11=0

⇔-4x+12=0

⇔-4x=-12

hay x=3

Vậy: x=3

b) Ta có: 2x+x+12=0

⇔3x+12=0

⇔3x=-12

hay x=-4

Vậy: x=-4

c) Ta có: x-5=3-x

⇔x-5-3+x=0

⇔2x-8=0

⇔2x=8

hay x=4

Vậy: x=4

d) Ta có: 7-3x=9-x

⇔7-3x-9+x=0

⇔-2x-2=0

⇔-2x=2

hay x=-1

Vậy: x=-1

28 tháng 3 2020

AI GIÚP MÌNH VỚI Ạ MÌNH ĐANG CẦN GẤP