Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 2 cách là dùng phép chia và xét giá trị riêng: mình sẽ dùng cách chia bạn mún làm cách kia thì bảo mình
Bài làm
Mà mình nghĩ là tìm m chứ bạn
a)
10x^2-7x+m 2x-3 5x 10x^2-15x - 8x+m +4 8x-12 - m+12
Để \(f\left(x\right)⋮2x-3\)\(\Leftrightarrow m+12=0\)
\(\Leftrightarrow m=-12\)
Vậy m=-12
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
Bài 2:
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)
Bài 3:
\(M=x^6-x^4-x^4+x^2+x^3-x\)
\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)
\(=8x^3-8x+8\)
\(=8\cdot8+8=72\)
bài 1:
a) 2m(x-y) + x-y = 2m(x-y) + (x-y) = (2m+1)(x-y)
b) x(y-2) + y\(^2\) - 2y = x(y-2) + y(y-2) = (x+y)(y-2)
c) x\(^2\) +xy - 2x - 2y = x(x+y) - 2(x+y) = (x-2)(x+y)
d) x + x\(^2\) - x\(^3\) - x\(^4\) = x(1 + x - x\(^2\) - x\(^3\))
e) 2+2x-xy-y = 2(1+x) - y(x+1) = (2-y)(x+1)
f) x\(^2\) + 2y - 1 -2x + 1 - y\(^2\) = (x\(^2\) -2x+1) - (y\(^2\)-2y+1) = (x-1)\(^2\) - (y-1)\(^2\)
g) (x+1)\(^2\) -x-1 = (x+1)\(^2\) -(x+1) =(x+1)(x+1-1) = (x+1)x
Bài 3:
\(P=x^2-4x+4+5=\left(x-2\right)^2+5>=5\)
Dấu = xảy ra khi x=2
Bài 4:
a: \(=-\left(x^2-4x-5\right)\)
\(=-\left(x^2-4x+4-9\right)\)
\(=-\left(x-2\right)^2+9< =9\)
Dấu = xảy ra khi x=2
b: \(=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/2
c: \(=x^2-6x+9+3=\left(x-3\right)^2+3>=3\)
Dấu '=' xảy ra khi x=3
Bài 2:
a) Ta có: \(2\left(x+1\right)=3+2x\)
\(\Leftrightarrow2x+2-3-2x=0\)
\(\Leftrightarrow-1< 0\)
Do đó: Phương trình \(2\left(x+1\right)=3+2x\) vô nghiệm
b) Ta có: \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+1\ge1>0\forall x\)
Do đó: Phương trình |x|+1=0 vô nghiệm
c) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1>0\forall x\)
Do đó: Phương trình x2+1=0 vô nghiệm
Bài 3:
a) Thay x=-2 vào phương trình \(2x+k=x-1\), ta được
\(2\cdot\left(-2\right)+k=-2-1\)
\(\Leftrightarrow-4+k=-3\)
hay k=1
Vậy: Khi k=1 thì phương trình \(2x+k=x-1\) có nghiệm là x=-2
b) Thay x=2 vào phương trình \(\left(2x+1\right)\left(9x+2k\right)-5\left(x+2\right)=40\), ta được
\(\left(2\cdot2+1\right)\left(9\cdot2+2k\right)-5\left(2+2\right)=40\)
\(\Leftrightarrow5\cdot\left(18+2k\right)-20=40\)
\(\Leftrightarrow5\left(18+2k\right)=60\)
\(\Leftrightarrow18+2k=12\)
\(\Leftrightarrow2k=-6\)
hay k=-3
Vậy: Khi k=-3 thì phương trình \(\left(2x+1\right)\left(9x+2k\right)-5\left(x+2\right)=40\) có nghiệm là x=2
Bài 4:
Ta có: (x-1)(2x-1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S_1=\left\{1;\frac{1}{2}\right\}\)
Gọi S2 là tập nghiệm của phương trình \(mx^2-\left(m+1\right)x+1=0\)
Để hai phương trình (x-1)(2x-1)=0 và \(mx^2-\left(m+1\right)x+1=0\) là hai phương trình tương đương thì hai phương trình này phải có chung tập nghiệm
⇔S1=S2
hay \(S_2=\left\{1;\frac{1}{2}\right\}\)
Thay x=1 vào phương trình \(mx^2-\left(m+1\right)x+1=0\), ta được
\(m\cdot1^2-\left(m+1\right)\cdot1+1=0\)
\(\Leftrightarrow m-\left(m+1\right)=-1\)
\(\Leftrightarrow m-m-1=-1\)
hay -1=-1
Thay \(x=\frac{1}{2}\) vào phương trình \(mx^2-\left(m+1\right)x+1=0\), ta được
\(m\cdot\left(\frac{1}{2}\right)^2-\left(m+1\right)\cdot\frac{1}{2}+1=0\)
\(\Leftrightarrow\frac{1}{4}m-\left(m+1\right)\cdot\frac{1}{2}=-1\)
\(\Leftrightarrow\frac{1}{4}m-\frac{1}{2}m-\frac{1}{2}=-1\)
\(\Leftrightarrow\frac{-1}{4}m=-\frac{1}{2}\)
hay 1\(m=2\)
Vậy: Khi m=2 thì hai phương trình \(mx^2-\left(m+1\right)x+1=0\) và (x-1)(2x-1)=0 là hai phương trình tương đương
Bài 5:
1:
a) Ta có: 7x+12=0
⇔7x=-12
hay \(x=\frac{-12}{7}\)
Vậy: \(x=\frac{-12}{7}\)
b) Ta có: -2x+14=0
⇔-2x=-14
hay x=7
Vậy: x=7
2)
a) Ta có: 3x+1=7x-11
⇔3x+1-7x+11=0
⇔-4x+12=0
⇔-4x=-12
hay x=3
Vậy: x=3
b) Ta có: 2x+x+12=0
⇔3x+12=0
⇔3x=-12
hay x=-4
Vậy: x=-4
c) Ta có: x-5=3-x
⇔x-5-3+x=0
⇔2x-8=0
⇔2x=8
hay x=4
Vậy: x=4
d) Ta có: 7-3x=9-x
⇔7-3x-9+x=0
⇔-2x-2=0
⇔-2x=2
hay x=-1
Vậy: x=-1
Bài 12:
a: Thay x=1 vào đa thức, ta được:
m+2+8=0
hay m=-10
b: Thay x=1 vào đa thức, ta được:
m+7-1=0
hay m=-6
c: Thay x=1 vào đa thức, ta được:
m+1-3=0
hay m=2