K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

\(2TS=2+2^2+2^3+2^4+...+2^{2009}\)

\(TS=2TS-TS=2^{2009}-1=-\left(1-2^{2009}\right)\)

\(B=\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)

4 tháng 5 2016

Gọi a là tử số còn b là mẫu số

a=1+2+2^2+...+2^2008

2a=2+2^2+2^3+...+2^2009

2a-a=(2+2^2+...+2^2009)-(1+2+2^2+....+2^2008)

a=2^2009-1

Suy ra,ta có:

B=2^2009-1/1-2^2009=-1

4 tháng 5 2016

Gọi A = \(1+2+2^2+2^3+...+2^{2008}\) .

Ta có : 2A - A = A = \(2^{2009}-1\) => B = \(\frac{2^{2009}-1}{1-2^{2009}}\) = -1.

Chắc chắn đúng.

14 tháng 4 2017

khó wá câu này i don't know

17 tháng 9 2024

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

17 tháng 4 2016

đặt tử =A,ta có:

tử=2A=2(1+2.2+2.22+...+2.22008)

=2.1+2.2+2.22+...+2.22008

=2+22+23+...+22009

2A-A=(2+22+23+...+22009)-(1+2+22+...+22008)

A=22009-1

thay A vào tử của S ta được:\(S=\frac{2^{2009}-1}{1-2^{2009}}=-1\)

16 tháng 4 2019

Đặt \(A=1+2+2^2+2^3+....+2^{2008}\)

\(2A=2+2^2+2^3+2^4+....+2^{2019}\)

\(A=2^{2019}-1\)

\(\Rightarrow B=\frac{2^{2019}-1}{1-2^{2019}}=\frac{-\left(1-2^{2019}\right)}{1-2^{2019}}=-1\)

26 tháng 5 2018

1.

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

cứ làm như vậy ta được :

\(=1+1=2\)

26 tháng 5 2018

2. Ta có :

\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)

vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\)\(\frac{2009}{2010}>\frac{2009}{2009+2010}\)

\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)

16 tháng 4 2016

Đặt A=\(1+2+2^2+........+2^{2008}\)

2A=\(2+2^2+2^3+.............+2^{2009}\)

=>A-2A=\(\left(1+2+2^2+.........+2^{2008}\right)-\left(2+2^2+2^3+..........+2^{2009}\right)\)

=>\(-A=1-2^{2009}\)

=>\(A=-\left(1-2^{2009}\right)\)

=>\(M=\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}\)

=>\(M=-1\)