Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2\left(x-2x^3\right)\)
\(=x^3-2x^5\)
\(b,\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
\(c,\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
\(d,\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=\left(6x^2+x-2\right)\left(3-x\right)\)
\(=18x^2+3x-6-6x^3-x^2+2x\)
\(=17x^2+5x-6-6x^3-x^2\)
\(e,\left(x+3\right)\left(x^2+3x-5\right)\)
\(=x^3+3x^2-5x+3x^2+9x-15\)
\(=x^3+6x^2+4x-15\)
\(f,\left(xy-2\right)\left(x^3-2x-6\right)\)
\(=x^4y-2x^2y-6xy-2x^3+4x-12\)
\(g,\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=20x^5-4x^4+8x^3-12x^2-5x^4+x^3-2x^2+3x+10x^3-2x^2+4x-6\)
\(=20x^5-9x^4+19x^3-16x^2+7x-6\)
a. x2(x−2x3)= x3-2x5
b. (x−2)(x−x2+4)= x2-x3+4x-2x+2x2-8= -x3+3x2+2x-8
c. (x2−1)(x2+2x)= x4+2x3-x2-2x
d. (2x−1)(3x+2)(3−x) = (6x2+x-2)(3-x)=18x2-6x3+3x-x2-6+2x =-6x3+17x2+5x-6
e. (x+3)(x2+3x−5)= x3+3x2-5x+3x2+9x-15= x3+6x2+4x-15
f. (xy−2)(x3−2x−6)= x4y-2x2y-6xy-2x3+4x+12
g. (5x3−x2+2x−3)(4x2−x+2)= 20x5-9x4+19x3-12x2+7x-6
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)
B = (x-1)(2x+1) - (x2-2x-1)
B = 2x2+x-2x-1-x2-2x-1 = x2-3x-2
B = x2+x-4x-2 = x(x+1) - 4(x+1)
B = (x+1)(x-4)
\(A=2x\left(x-2\right)-x\left(2x-3\right)\\ =2x^2-4x-2x^2+3x\\ =-x\\ B=\left(x-1\right)\left(2x+1\right)-\left(x^2-2x-1\right)\\ =x\left(2x+1\right)-\left(2x+1\right)-x^2+2x+1\\ =2x^2+x-2x-1-x^2+2x+1\\ =x^2+x\\ C=\left(x+y\right)\left(x^2-xy+y^2\right)-x^3\\ =x\left(x^2-xy+y^2\right)+y\left(x^2-xy+y^2\right)-x^3\\ =x^3-x^2y+xy^2+x^2y-xy^2+y^3-x^3\\ =y^3\)
\(D=\left(12x-3\right)\left(x+4\right)-x\left(2x+7\right)\\ =x\left(12x-3\right)+4\left(12x-3\right)-2x^2-7x\\ =12x^2-3x+48x-12-2x^2-7x\\ =10x^2+38x-12\\ E=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\\ =2x\left(4x^2-2xy+y^2\right)+y\left(4x^2-2xy+y^2\right)\\ =8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3\\ =8x^3+y^3\)
a: \(=2x^2-x+5\)
b: \(=-\dfrac{3}{2}x^3+x^2-\dfrac{1}{2}x\)
c: \(=-x^3+\dfrac{3}{2}-2x\)
d: \(=-2x^2+4xy-6y^2\)
e: \(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)
a) 2x(x-3)+5(x-3)=0
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy: phương trình đã cho có tập nghiệm S=\(\left\{3;-\frac{5}{2}\right\}\)
a. \(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)
\(=2x^2-10x-x^2+4x-4-x^2+9\)
\(=-6x+5\)
b. \(\left(x+1\right)^2+3\left(x-5\right)\left(x+5\right)-\left(2x-1\right)^2\)
\(=x^2+2x+1+3x^2-75-4x^2+4x-1\)
\(=6x-75\)
c. \(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-x^2-x+6-x^2+16\)
\(=-15x+22\)
d. \(\left(x+3\right)\left(x-3\right)-\left(x+5\right)\left(x-1\right)-\left(x-4\right)^2\)
\(=x^2-9-x^2-4x+5-x^2+8x-16\)
\(=-x^2+4x-20\)
Bài làm:
a) \(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)
\(=2x^2-10x-x^2+4x-4-x^2+9\)
\(=-6x+5\)
b) \(\left(x+1\right)^2+3\left(x-5\right)\left(x+5\right)-\left(2x-1\right)^2\)
\(=x^2+2x+1+3x^2-75-4x^2+4x-1\)
\(=6x-75\)
c) \(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-x^2-x+6-x^2+16\)
\(=-15x+22\)
d) \(\left(x+3\right)\left(x-3\right)-\left(x+5\right)\left(x-1\right)-\left(x-4\right)^2\)
\(=x^2-9-x^2-4x+5-x^2+8x-16\)
\(=-x^2-4x-20\)
\(a.\Leftrightarrow x^2+x-6+2x^2+4x+2=x^2-6x+9-2x^2+4x\)
\(\Leftrightarrow4x^2+7x-13=0\)(pt vô nghiệm)
\(b.\Leftrightarrow x^3+3x^2+3x+1-x^2+2x+8=x^3-8+2x^2\)
\(\Leftrightarrow5x=-17\Rightarrow x=\frac{-17}{5}\)
Đặt \(t=x^2+2x+2\left(t\ge1\right)\)
\(c.\Leftrightarrow\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\)\(\Leftrightarrow\frac{t^2-1+t^2}{t^2+t}=\frac{7}{6}\)\(\Leftrightarrow12t^2-6=7t^2+7t\)
\(\Leftrightarrow5t^2-7t-6=0\Rightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=\frac{-3}{5}\left(l\right)\end{cases}}\)
\(\Rightarrow x^2+2x+2=2\Rightarrow x=-2\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
tính sao bạn ??? ko hỉu câu hỏi