Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
=(1-1/2)+(1-1/6)+(1-1/12)+(1-1/30)+(1-1/42)+(1-1/56)+(1-1/72)+(1-1/90)
=(1+1+1+1+1+1+1+1+1)-(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
Ta có : A=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
A=1/1.2+1/2.3+1/3.4=1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
A=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
A=1-1/10
Thay vào ta có
=9-9/10
=81/10
Đầy đủ luôn nhé
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
= 1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
= 9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
= 9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]
= 9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
=9 – (1 – 1/10) = 9 – 9/10 = 81/10
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90+109/110
= 1 - 1/2 + 1 - 1/6 + 1 - 1/12 .....+1 - 1/110
= 10 - ( 1/2 + 1/6 + ...+ 1/110)
= 10 - ( 1 - 1/ 2+ 1/2 - 1/ 3+ 1/3 - 1/4 ....+ 1/10 - 1/11)
= 10 - (1 - 1/11)= 10 - 10/11
= 100/11
\(A=\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(A=9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
Gọi \(A=9-B\)
\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(B=1-\frac{1}{10}=\frac{9}{10}\)
\(A=9-\frac{9}{10}\)
\(A=\frac{90-9}{10}=\frac{81}{10}\)
Ko đúng hơi tiếc :D
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+......+\left(1-\frac{98}{90}\right)\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}\)
\(=\frac{81}{10}\)
(1-1/2)+(1-1/6)+(1-1/12)+(1-1/20)+(1-1/30)+(1-1/42)+(1-1/56)+(1-1/72)+(1-1/90)
=(1+1+1+1+1+1+1+1+1)-(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
=9-(1/1x2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10)
=9-(1-1/2+1/2+1/3+...............+1/9-1/10)
=9-(1-1/10)
=9-1/9
=80/9
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+...+1-\frac{1}{90}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\)
Từ 2 đến 9 có : ( 9 - 2 ) / 1 + 1 = 8 ( số hạng ) => có 8 số 1
\(\Rightarrow8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=8-\frac{2}{5}=\frac{38}{5}\)
b) \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{109}{110}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{110}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{10\cdot11}\right)\)
Từ 1 đến 10 có : ( 10 - 1 ) / 1 + 1 = 10 ( số hạng ) => có 10 số 1
\(\Rightarrow10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=10-\left(1-\frac{1}{11}\right)\)
\(=10-\frac{10}{11}=\frac{100}{11}\)
9 - A = 1 - 1/2 + 1-5/6 + 1 - 11/12 + ... + 1-89/90
9 - A = 1/2 + 1/6 + 1/12 + .. + 1/90
9 - A = 1/1.2 + 1/2.3 + 1/3.4 + .. + 1/9.10
9-A = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10
9 -A = 1/1 - 1/10
9 - A = 9/10
A = 9 - 9/10
A = 81/10
ta có
\(B=\frac{1}{2}+\frac{1}{6}+................+\frac{1}{90}=\frac{1}{1x2}+.....+\frac{1}{9x10}=1-\frac{1}{2}+...+\frac{1}{9}-\frac{1}{10}=\frac{9}{10}\)
Dễ thấy B+A=1+1+...+1=10
=>A=10-B=\(10-\frac{9}{10}=\frac{91}{10}\)
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+....+\frac{89}{90}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+..+\left(1-\frac{1}{90}\right)\)
\(A=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+...+\left(1-\frac{1}{9.10}\right)\)
\(A=\left(1+1+1+...+1\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
9 số 1
\(A=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=9-\left(1-\frac{1}{10}\right)\)
\(A=9-\frac{9}{10}\)
\(A=\frac{81}{10}\)
Ủng hộ mk nha ^-^
Câu hỏi của Try Build Gundam - Toán lớp 7 - Học toán với OnlineMath
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
a)\(A=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(\frac{1}{2}xA=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(\frac{1}{4}xA=\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}\)
\(\frac{1}{4}xA-\frac{1}{2}xA=\frac{1}{3}-\frac{1}{384}\)
\(\frac{1}{4}xA=\frac{127}{384}\)
\(A=\frac{127}{384}:\frac{1}{4}\)
\(A=\frac{127}{96}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)