Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=4\cdot15^2-70^2=-4000\)
b: \(B=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
\(=100^2=10000\)
c: \(C=b^2-3b+a^2+3a-2ab\)
\(=\left(a-b\right)^2+3\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+3\right)\)
\(=\left(-5\right)\cdot\left(-5+3\right)=\left(-5\right)\cdot\left(-2\right)=10\)
d: \(D=\left(x-y\right)^3+3xy\left(x-y\right)+3xy\)
\(=\left(-1\right)^3-3xy+3xy\)
=-1
13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
câu a chắc bạn tự làm được
câu b) \(x^2+2x\left(y+1\right)+y^2+2y+1\)
=\(x^2+2xy+2x+y^2+2y+1\)
=\(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1\)
= \(\left(x+y\right)^2+2\left(x+y\right)+1=10000\)
câu c) từ đề bài
=> \(b^2-3b+a^2+3a-2ab=\left(b^2-2ab+a^2\right)-3\left(b-a\right)=\left(b-a\right)^2-3\left(b-a\right)\)
bạn thay b-a vào rồi tính.
câu d: \(Taco:\left(x-y\right)^3=x^3-3x^2y+3xy^2-y^3=x^3-y^3-3xy\left(x-y\right)=1\)
theo đề x-y =-1 => \(x^3-y^3+3xy=1\)
câu e tt
câu f:Ta có \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=0\)(2)
mà \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
theo đề \(a^2+b^2+c^2=1\)=> \(2\left(ab+bc+ac\right)=-1=>ab+bc+ac=-\frac{1}{2}\)(1)
bình phương biểu thức 1 lên ta được \(\left(ab+bc+ac\right)^2=\left(a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\right)=\frac{1}{4}\)
có a+b+c=0 nên \(a^2b^2+b^2c^2+a^2c^2=\frac{1}{4}\)
thay vào giá trj của biểu thức trên vào (2) đến đây bạn chỉ cần tính là ra \(a^4+b^4+c^4\)
cảm ơn bạn