Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right).n.\left(n+1\right)\)
\(4B=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)
\(B=\frac{\left(n-1\right).n.\left(n+1\right)\left(n+2\right)}{4}\)
Tham khảo nhé~
Ta có: \(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=4.\left[1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right)n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-2\right).\)\(\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
\(\Leftrightarrow B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)
Vậy \(B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)
S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
Ta có: A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
=> 3A = 1.2.(3-0) + 2.3.(4-1) + .... + n.(n+1).(n+2 - n+1)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + n.(n+1).(n+2)
=> 3A = n.(n+1).(n+2)
= > A = \(\frac{\text{n.(n+1).(n+2)}}{3}\)
ta có:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
dựa vào nhé
A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
=>3A=1.2.3+2.3.3+3.4.3+n.(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+n.(n+1)(n+2)-(n-1).n.(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1).(n+2)
=>A=n.(n+1)(n+2)/3
B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
=>4B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4
=1.2.3.(4-0)+2.3.4.(5-1)+...+(n-1)n(n+1)[(n+2)-(n-2)]
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
=(n-1)n(n+1)(n+2)-0.1.2.3
=(n-1)n(n+1)(n+2)
=>B=(n-1)n(n+1)(n+2)/4
B=1.2.3+2.3.4+.........+(n−1)n(n+1)B=1.2.3+2.3.4+.........+(n−1)n(n+1)
⇔4B=1.2.3.4+2.3.4.4+........+(n−1)n(n+1).4⇔4B=1.2.3.4+2.3.4.4+........+(n−1)n(n+1).4
⇔4B=(4−0).1.2.3+(5−1).2.3.4+.........+[(n+2)−(n−2)](n−1)n(n+1)⇔4B=(4−0).1.2.3+(5−1).2.3.4+.........+[(n+2)−(n−2)](n−1)n(n+1)
⇔4B=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+.......+(n−1)n(n+1)(n+2)(n+3)−(n−2)(n−1)n(n+1)⇔4B=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+.......+(n−1)n(n+1)(n+2)(n+3)−(n−2)(n−1)n(n+1)
⇔4B=(n−1)n(n+1)(n+2)⇔4B=(n−1)n(n+1)(n+2)
⇔B=(n−1)n(n+1)(n+2)4
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
\(\Leftrightarrow B=\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
B=1*2*3+2*3*4+3*4*5+...+(n-1)n(n+1)
4B=1*2*3*4+2*3*4*(5-1)+3*4*5*(6-2)+...+(n-1)*n*(n+1)*[(n+2)-(n-2)]
4B=1*2*3*4+2*3*4*5-1*2*3*4+3*4*5*6-2*3*4*5+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
4B=(n-1)n(n+1)(n+2)
B=[(n-1)n(n+1)(n+2)]:4
Nho k cho minh voi nha
Ta có: B = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
=> 3A = 1.2.(3-0) + 2.3.(4-1) + .... + n.(n+1).(n+2 - n+1)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + n.(n+1).(n+2)
=> 3A = n.(n+1).(n+2)
= > A =