Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(9x^2-49=9\)
\(\Leftrightarrow9x^2=58\)
\(\Leftrightarrow x^2=29\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=29\\x=-29\end{array}\right.\)
Vậy ......................
b ) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\)
\(\Leftrightarrow\left(x^3+3^3\right)-x.\left(x^2-1^2\right)-27=0\)
\(\Leftrightarrow x^3+27-x^3+x-27=0\)
\(\Leftrightarrow x=0\)
c ) \(\left(x-1\right)\left(x+2\right)-x-2=0\)
\(\Leftrightarrow x^2+2x-x-2-x-2=0\)
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)
Vây .....................
Bài 1:
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(114x^2+216x+81=114x^2-480x+400\)
\(144x^2+216x=144x^2-480x+400-81\)
\(114x^2+216=114x^2-480x+319\)
\(696x=319\)
\(\Rightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Rightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x=-1\)
Bài 2:
a) \(5x^3-7x^2-15x+21=0\)
\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Rightarrow x=\frac{7}{5}\)
b) \(\left(x-3\right)^2=4x^2-20x+25\)
\(x^2-6x+9-25=4x^2-20x+25\)
\(x^2-6x+9=4x^2-20x+25-25\)
\(x^2-6x-16=4x^2-20x\)
\(x^2+14x-16=4x^2-4x^2\)
\(-3x^2+14x-16=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)
\(x^2-2x=x-4\)
\(x^2-2x=x-4+4\)
\(x^2-2x=x-x\)
\(x^2-3x=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)
\(-48x^2+56x-24=-24\)
\(-48x^2+56x=-24+24\)
\(-48x^2+56=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)
mình ko chắc
#)Giải :
Bài 1 :
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)
\(\Leftrightarrow144x^2+216=144x^2-480x+319\)
\(\Leftrightarrow696x=319\)
\(\Leftrightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-1\)
a) 9(4x + 3)2 = 16(3x - 5)2
=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0
=> (12x + 9)2 - (12x - 20)2 = 0
=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0
=> 29.(24x - 11) = 0
=> 2x - 11 = 0
=> 2x = 11
=> x = 11 : 2 = 11/2
b) (x3 - x2)2 - 4x2 + 8x - 4 = 0
=> (x3 - x2)2 - (2x - 2)2 = 0
=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0
=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0
=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0
=> (x2 - 2)(x2 + 2)(x - 1)2 = 0
=> x2 - 2 = 0
hoặc : x2 + 2 = 0
hoặc : (x - 1)2 = 0
=> x2 = 2
hoặc : x2 = -2 (vl)
hoặc : x - 1 = 0
=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
hoặc : x = 1
Vậy ...
c) x5 + x4 + x3 + x2 + x + 1 = 0
=> x4(x +1) + x2(x + 1) + (x + 1) = 0
=> (x4 + x2 + 1)(x + 1) = 0
=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)0 \(\forall\)x; x2 \(\ge\)0 \(\forall\)x => x4 + x2 \(\ge\)0 \(\forall\)x)
=> x = -1
Bài 2: Tìm x
a) Ta có: \(4x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow4x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\4x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-\frac{1}{4}\right\}\)
b) Ta có: \(\left(3x-1\right)^2-9=0\)
\(\Leftrightarrow\left(3x-1-3\right)\left(3x-1+3\right)=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=4\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-\frac{2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{4}{3};-\frac{2}{3}\right\}\)
c) Ta có: \(x^3-8+\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\right)=0\)
mà \(x^2+3x+5>0\forall x\)
nên x-2=0
hay x=2
Vậy: x=2
Tìm x
a) 9(3x-2)=x(2-3x)
b) 25x2-2=0
c) x2-25=6x-9
d) (x+2)2-(x-2)(x+2)=0
e) x3-8=(x-2)3
f) x3+5x2-4x-20=0
a) 9(3x - 2) = x(2 - 3x)
\(\Leftrightarrow\)-9(2 - 3x) = x(2 - 3x)
\(\Leftrightarrow\)-9(2 - 3x) - x(2 - 3x) = 0
\(\Leftrightarrow\)(2 - 3x)(- 9 - x) = 0
\(\Leftrightarrow\)2 - 3x = 0 hay - 9 - x = 0
\(\Leftrightarrow\) 3x = 2 \(\Leftrightarrow\) x = - 9
\(\Leftrightarrow\) x = 2/3
b) 25x2 - 2 = 0
\(\Leftrightarrow\)(5x)2 - (\(\sqrt{2}\))2 = 0
\(\Leftrightarrow\)(5x - \(\sqrt{2}\))(5x + \(\sqrt{2}\)) = 0
\(\Leftrightarrow\)5x - \(\sqrt{2}\)= 0 hay 5x + \(\sqrt{2}\)= 0
\(\Leftrightarrow\)5x = \(\sqrt{2}\) \(\Leftrightarrow\)5x = -\(\sqrt{2}\)
\(\Leftrightarrow\) x = \(\sqrt{2}\)/5 \(\Leftrightarrow\) x = -\(\sqrt{2}\)/5
c) x2 - 25 = 6x - 9
\(\Leftrightarrow\)(x2 - 6x + 9) - 25 = 0
\(\Leftrightarrow\)(x - 3)2 - 52 = 0
\(\Leftrightarrow\)(x - 3 - 5)(x - 3 + 5) = 0
\(\Leftrightarrow\)(x - 7)(x + 2) = 0
\(\Leftrightarrow\)x - 7 = 0 hay x + 2 = 0
\(\Leftrightarrow\)x = 7 \(\Leftrightarrow\)x = -2
d) (x + 2)2 - (x - 2)(x + 2) = 0
\(\Leftrightarrow\)(x + 2)(x + 2) - (x - 2)(x + 2) = 0
\(\Leftrightarrow\)(x + 2)(x + 2 - x + 2) = 0
\(\Leftrightarrow\)(x + 2)4 = 0 (hay 4(x + 2) = 0)
\(\Leftrightarrow\)x + 2 = 0 (vì 4 \(\ne\)0)
\(\Leftrightarrow\)x = -2
e) x3 - 8 = (x - 2)3
\(\Leftrightarrow\)x3 - 23 = (x - 2)3
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) = (x - 2)3
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) - (x - 2)3 = 0
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) - (x - 2)(x - 2)2 = 0
\(\Leftrightarrow\)(x - 2)[x2 + 2x + 4 - (x - 2)2] = 0
\(\Leftrightarrow\)(x - 2)[x2 + 2x + 4 - (x2 - 4x + 4)] = 0
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4 - x2 + 4x - 4) = 0
\(\Leftrightarrow\)(x - 2)6x = 0 (hay 6x(x - 2) = 0)
\(\Leftrightarrow\)x - 2 = 0 hay x = 0 (vì 6\(\ne\)0)
\(\Leftrightarrow\)x = 2
f) x3 + 5x2 - 4x - 20 = 0
\(\Leftrightarrow\)x2(x + 5) - 4(x + 5) = 0
\(\Leftrightarrow\)(x + 5)(x2 - 4) = 0
\(\Leftrightarrow\)(x + 5)(x - 2)(x + 2) = 0
\(\Leftrightarrow\)x + 5 = 0 hay x - 2 = 0 hay x + 2 = 0
\(\Leftrightarrow\)x = -5 \(\Leftrightarrow\)x = 2 \(\Leftrightarrow\)x = -2