K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2016

a ) \(9x^2-49=9\)

\(\Leftrightarrow9x^2=58\)

\(\Leftrightarrow x^2=29\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=29\\x=-29\end{array}\right.\)

Vậy ......................

b ) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\)

\(\Leftrightarrow\left(x^3+3^3\right)-x.\left(x^2-1^2\right)-27=0\)

\(\Leftrightarrow x^3+27-x^3+x-27=0\)

\(\Leftrightarrow x=0\)

c ) \(\left(x-1\right)\left(x+2\right)-x-2=0\)

\(\Leftrightarrow x^2+2x-x-2-x-2=0\)

\(\Leftrightarrow x^2-4=0\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)

Vây .....................

 

 

 

 

 

 

 

 

26 tháng 9 2016

d với e thì tách hết ra, tự triệt tiêu là ra kết quả, dễ mà :) @La  Thị Thu Phượng

18 tháng 9 2018

Bài 1:

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(114x^2+216x+81=114x^2-480x+400\)

\(144x^2+216x=144x^2-480x+400-81\)

\(114x^2+216=114x^2-480x+319\)

\(696x=319\)

\(\Rightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Rightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x=-1\)

Bài 2:

a) \(5x^3-7x^2-15x+21=0\)

\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Rightarrow x=\frac{7}{5}\)

b) \(\left(x-3\right)^2=4x^2-20x+25\)

\(x^2-6x+9-25=4x^2-20x+25\)

\(x^2-6x+9=4x^2-20x+25-25\)

\(x^2-6x-16=4x^2-20x\)

\(x^2+14x-16=4x^2-4x^2\)

\(-3x^2+14x-16=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)

\(x^2-2x=x-4\)

\(x^2-2x=x-4+4\)

\(x^2-2x=x-x\)

\(x^2-3x=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)

\(-48x^2+56x-24=-24\)

\(-48x^2+56x=-24+24\)

\(-48x^2+56=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)

mình ko chắc

Bài 1

A, 11/24

B, -1

chúc bn học tốt

12 tháng 7 2019

#)Giải :

Bài 1 :

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)

\(\Leftrightarrow144x^2+216=144x^2-480x+319\)

\(\Leftrightarrow696x=319\)

\(\Leftrightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Leftrightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x=-1\)

12 tháng 7 2019

a) 9(4x + 3)2 = 16(3x - 5)2

=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0

=> (12x + 9)2 - (12x - 20)2 = 0

=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0

=> 29.(24x - 11) = 0

=> 2x - 11 = 0

=> 2x = 11

=>  x = 11 : 2 = 11/2

b) (x3 - x2)2 - 4x2 + 8x - 4 = 0

=> (x3 - x2)2 - (2x - 2)2 = 0

=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0

=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0

=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0

=> (x2 - 2)(x2 + 2)(x - 1)2 = 0

=> x2 - 2 = 0

hoặc : x2 + 2 = 0

hoặc : (x - 1)2 = 0

=> x2 = 2

 hoặc : x2 = -2 (vl)

hoặc : x - 1 = 0

=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

hoặc : x = 1

Vậy ...

c) x + x4 + x3 + x2 + x + 1 = 0

=> x4(x +1) + x2(x + 1) + (x + 1) = 0

=> (x4 + x2 + 1)(x + 1) = 0

=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)\(\forall\)x; x2 \(\ge\)\(\forall\)x => x4 + x2 \(\ge\)\(\forall\)x)

=> x = -1

17 tháng 10 2020

Bài 2: Tìm x

a) Ta có: \(4x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow4x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\4x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{1}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-\frac{1}{4}\right\}\)

b) Ta có: \(\left(3x-1\right)^2-9=0\)

\(\Leftrightarrow\left(3x-1-3\right)\left(3x-1+3\right)=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=4\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-\frac{2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{4}{3};-\frac{2}{3}\right\}\)

c) Ta có: \(x^3-8+\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\right)=0\)

\(x^2+3x+5>0\forall x\)

nên x-2=0

hay x=2

Vậy: x=2

9 tháng 6 2017

a)       9(3x - 2) = x(2 - 3x)
\(\Leftrightarrow\)-9(2 - 3x) = x(2 - 3x)
\(\Leftrightarrow\)-9(2 - 3x) - x(2 - 3x) = 0
\(\Leftrightarrow\)(2 - 3x)(- 9 - x) = 0
\(\Leftrightarrow\)2 - 3x = 0   hay       - 9 - x = 0
\(\Leftrightarrow\)    3x = 2      \(\Leftrightarrow\)       x = - 9
\(\Leftrightarrow\)      x = 2/3

b)       25x2 - 2 = 0
\(\Leftrightarrow\)(5x)2 - (\(\sqrt{2}\))2 = 0
\(\Leftrightarrow\)(5x - \(\sqrt{2}\))(5x + \(\sqrt{2}\)) = 0
\(\Leftrightarrow\)5x - \(\sqrt{2}\)= 0         hay             5x + \(\sqrt{2}\)= 0
\(\Leftrightarrow\)5x               = \(\sqrt{2}\)       \(\Leftrightarrow\)5x                 = -\(\sqrt{2}\)
\(\Leftrightarrow\)  x               = \(\sqrt{2}\)/5    \(\Leftrightarrow\)  x                 = -\(\sqrt{2}\)/5

c)       x2 - 25 = 6x - 9
\(\Leftrightarrow\)(x2 - 6x + 9) - 25 = 0
\(\Leftrightarrow\)(x - 3)2 - 52 = 0
\(\Leftrightarrow\)(x - 3 - 5)(x - 3 + 5) = 0
\(\Leftrightarrow\)(x - 7)(x + 2) = 0
\(\Leftrightarrow\)x - 7 = 0     hay     x + 2 = 0
\(\Leftrightarrow\)x      = 7     \(\Leftrightarrow\)x       = -2

d)       (x + 2)2 - (x - 2)(x + 2) = 0
\(\Leftrightarrow\)(x + 2)(x + 2) - (x - 2)(x + 2) = 0
\(\Leftrightarrow\)(x + 2)(x + 2 - x + 2) = 0
\(\Leftrightarrow\)(x + 2)4 = 0 (hay 4(x + 2) = 0)
\(\Leftrightarrow\)x + 2 = 0 (vì 4 \(\ne\)0)
\(\Leftrightarrow\)x       = -2

e)       x3 - 8 = (x - 2)3
\(\Leftrightarrow\)x3 - 23 = (x - 2)3
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) = (x - 2)3
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) - (x - 2)3 = 0
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) - (x - 2)(x - 2)2 = 0
\(\Leftrightarrow\)(x - 2)[x2 + 2x + 4 - (x - 2)2] = 0
\(\Leftrightarrow\)(x - 2)[x2 + 2x + 4 - (x2 - 4x + 4)] = 0
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4 - x2 + 4x - 4) = 0
\(\Leftrightarrow\)(x - 2)6x = 0 (hay 6x(x - 2) = 0)
\(\Leftrightarrow\)x - 2 = 0      hay      x = 0 (vì 6\(\ne\)0)
\(\Leftrightarrow\)x      = 2

f)        x3 + 5x2 - 4x - 20 = 0
\(\Leftrightarrow\)x2(x + 5) - 4(x + 5) = 0
\(\Leftrightarrow\)(x + 5)(x2 - 4) = 0
\(\Leftrightarrow\)(x + 5)(x - 2)(x + 2) = 0
\(\Leftrightarrow\)x + 5 = 0      hay      x - 2 = 0         hay        x + 2 = 0
\(\Leftrightarrow\)x       = -5      \(\Leftrightarrow\)x      = 2            \(\Leftrightarrow\)x       = -2