Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x + 1) + (x + 2) + (x + 3) + ... + (x + 99) = 90387 (99 cặp số ở vế trái)
=> (x + x + .... + x) + (1 + 2 + 3 + ... + 99) = 90387
=> 99x + 99.(99 + 1) : 2 = 93087
=> 99x + 4950 = 93087
=> 99x = 85437
=> x = 863
Vậy x = 863
[x+1]+[x+2]+[x+3]......[x+99]=90387
xét dãy số trên có 2 số hạng liền nhau hơn kém nhau 1 đơn vị
dãy số trên có số số hạng là :
( 99-1) : 1+1= 99 ( số hạng )
vô bài ta có
( x+1) + (x+2) +(x+3)+ ..+(x+99) =90387
( x+x+x+..+x) + ( 1+2+3+...+99) = 90387
x*99 + ( 99+1) *99:2= 90387
x*99+ 4950 = 90387
x*99= 90387 - 4950
x*99= 85 437
x= 85437 : 99
x= 863
(x+1)+(x+2)+(x+3)+........+(x+99)=X+1+X+2+X+3+X+4+...+X+98+X+99=(X+X+X+...+X+X)+(1+2+3+4+...+98+99)
(CÓ 99 SỐ X )
= 99X+4950
Bài 2:
B=1+(-2)+3(-4)+5+(-6)+......+99+(-100)
B= (1+3+5+...+99)+[(-2)+(-4)+...+(-100)]
B= (1+3+5+...+99)-(2+4+...+100)
Đặt M=(1+3+5+...+99) ; N= (2+4+...+100)
+) M=1+3+5+...+99
Ta có 2 số kề nhau cách nhau 2đv
Số các số hạng = (99-1):2+1=50 số
Tổng M = (99+1).50:2=2500
+) Tương tự tổng N= 2450
Vậy B= M-N = 2500-2450= 50
Tk nhé!!
BÀI 2
60%.x + 0,4.x + x:3= 2
\(\frac{60}{100}\)x + \(\frac{4}{10}\).x + x. \(\frac{1}{3}\)=2
\(\frac{3}{5}\).x + \(\frac{2}{5}\).x + x.\(\frac{1}{3}\)=2
(\(\frac{3}{5}\)+ \(\frac{2}{5}\)+ \(\frac{1}{3}\)) .x =2
\(\frac{4}{3}\).x =2
x = 2: \(\frac{4}{3}\)
x = \(\frac{3}{2}\)
Vậy x=\(\frac{3}{2}\)
k cho mik nha các bạn
Bài 2 :
60%x + 0.4x + x : 3 = 2
\(x.\left(\frac{60}{100}+\frac{2}{5}+\frac{1}{3}\right)\)= 2
\(x.\frac{4}{3}\)= 2
\(x=2.\frac{3}{4}\)
\(x=1.5\)
Bài 2 :
a ) l x l < 3
=> l x l thuộc { 0 ; 1 ; 2 }
=> x thuộc { - 2 ; - 1 ; 0 ; 1 ; 2 }
Vậy x thuộc { - 2 ; - 1 ; 0 ; 1 ; 2 }
1
\(\left(x-2\right):2.3=6\)
\(\Leftrightarrow\left(x-2\right):2=2\)
\(\Leftrightarrow\left(x-2\right)=4\)
\(\Leftrightarrow x=4+2=6\)
c) ta có
\(\left[\left(2x+1\right)+1\right]m:2=625\)
\(\Leftrightarrow\left[\left(2x+1\right)+1\right]\left\{\left[\left(2x+1\right)-1\right]:2+1\right\}=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-1:2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2=1249\)
\(\Leftrightarrow\left(2x+1\right)^2+1=1251\)
\(\Leftrightarrow\left(2x+1\right)^2=1250\)
...
2
\(\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{5}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}:\frac{5}{3}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}.\frac{3}{5}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
nhanh lên nha mik gấp lắm