K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

Ai giúp giùm bài này với

Thời hạn : Thứ 5 tuần sau nhé

28 tháng 2 2019

a)Gọi số mới là 664abc (0=<a,b,c=<9)

ta có  664abc  chia hết cho 9 nên (6+6+4+a+b+c)\(⋮\)\(\Leftrightarrow\left(16+a+b+c\right)⋮9\)

mặt khác số đó còn chia hết cho 11

nên (6+4+b-6-a-c)\(⋮11\Leftrightarrow\left(4+b-a-c\right)⋮11\)mà 4+b-c-a có GTLN là 13 vậy 4+b-a-c=11

ta thấy \(0\le a,b,c\le9\Rightarrow16+a+b+c\le43\Rightarrow16+a+b+c\in\left\{9;18;27;36\right\}\)

16+a+b+c9182736
4+b-a-c11111111
b0(t/m)4,5(L)9(t/m)13,5(L)

số đó cx chia hết cho 5 nên c=(0;5)

TH1 b=0 thì a+c=-7(vô lý)

Th2:b=9 thì a+c=2

nên c chỉ có thể là 0

với c=0 thì a=2

Vậy số thêm vào là 290 và số sau khi thêm vào là 664290

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

Bài 1:a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc: Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm...
Đọc tiếp

Bài 1:

a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?

b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc: Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm số A đã cho?

Bài 2: Tính giá trị các biểu thức sau bằng cách hợp lý:

\(A=2880:\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)

\(B=\frac{\frac{-2}{13}-\frac{2}{15}+\frac{2}{19}}{\frac{4}{13}+\frac{4}{15}-\frac{4}{19}}\)

\(C=\frac{2}{143}-\frac{6}{187}-\frac{4}{357}-\frac{6}{91}\)

\(D=\frac{\left(\frac{7}{15}+\frac{1414}{4545}+\frac{34}{153}\right):3\frac{3}{23}-\frac{3}{11}\left(2\frac{2}{3}-1,75\right)}{\left(\frac{3}{7}-0,25\right)^2:\left(\frac{3}{28}-\frac{1}{24}\right)}\)

Bài 3: Tìm x biết :

\(\frac{\left(27\frac{5}{19}-26\frac{4}{13}\right)\left(\frac{3}{4}+\frac{19}{59}-\frac{3}{118}\right)}{\left(\frac{3}{4}+x\right)\frac{27}{33}}=\frac{\frac{1}{13.16}+\frac{1}{14.17}}{\frac{1}{13.15}+\frac{1}{14.16}+\frac{1}{15.17}}\)

 

 

 

 

 

 

 

 

1
14 tháng 8 2016

a) số chia cho 9 dư 5 có dạng 9a+5 
ta có 9a+5 chia 7 dư 2a+5 
theo đề bài ta lại có 2a+5 chia 7 dư 4 nên có dạng 2a+5=7b+4 =>a=(7b-1)/2 
số cần tìm luc này có dạng 63b/2+1/2 chia 5 du 3b/2+1/2 
như vậy ta cần tìm số b nhỏ nhất sao cho 3b/2+1/2 chia 5 dư 3 hay số 3b/2-5/2 chia hết cho 5 
=>3b/10-1/2 là số nguyên 
=>3b-5 chia hết cho 10 
=>b=5 
=>số cần tìm là 63*5/2+1/2=158

Bài 1:a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc : Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm...
Đọc tiếp

Bài 1:

a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?

b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc : Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm số A đã cho?

Bài 2: Tính giá trị các biểu thức sau bằng cách hợp lý:

\(A=2880:\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)

\(B=\frac{\frac{-2}{13}-\frac{2}{15}+\frac{2}{19}}{\frac{4}{13}+\frac{4}{15}+\frac{4}{19}}\)

\(C=\frac{2}{143}-\frac{6}{187}-\frac{4}{357}-\frac{6}{91}\)

\(D=\frac{\left(\frac{7}{15}+\frac{1414}{4545}+\frac{34}{135}\right):3\frac{3}{23}-\frac{3}{11}\left(2\frac{2}{3}-1,75\right)}{\left(\frac{3}{7}-0,25\right)^2:\left(\frac{3}{28}-\frac{1}{24}\right)}\)

Bài 3: Tìm x biết : 

\(\frac{\left(27\frac{5}{19}-26\frac{4}{13}\right)\left(\frac{3}{4}+\frac{19}{59}-\frac{3}{118}\right)}{\left(\frac{3}{4}+x\right)\frac{27}{33}}=\frac{\frac{1}{13.16}+\frac{1}{14.17}}{\frac{1}{13.15}+\frac{1}{14.16}+\frac{1}{15.17}}\)

 

 

 

 

 

 

1
13 tháng 8 2016

Bài 1 :

a.  Gọi số cần tìm là a.

Ta có:  a : 5 dư 3 

             a : 7 dư 4    => 2a -1 chia hết cho 5; 7; 9 mà 

             a : 9 dư 5    a nhỏ nhất => 2a - 1 nhỏ nhất

                                  => 2a - 1 \(\in\) BCNN\(\left(5,7,9\right)\) = 315

                                  => 2a = 316 => a = 158

          Vậy số tự nhiên cần tìm là 158

Bài 2:

A = 2880 : \(\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)

A = 2880 : \(\left\{\left[119-7^2\right].2-25.4\right\}\)

A = 2880 : \(\left\{\left[119-49\right].2-100\right\}\)

A = 2880 : \(\left\{70.2-100\right\}\)

A = 2880 : \(\left\{140-100\right\}\)

A = 2880 : 40

A = 72

B = \(\frac{\frac{-2}{13}-\frac{3}{15}+\frac{3}{10}}{\frac{4}{13}+\frac{4}{15}+\frac{4}{10}}\)

B = \(\frac{\frac{-23}{65}+\frac{3}{10}}{\frac{112}{195}+\frac{4}{10}}\)

B = \(\frac{-3}{20}\)

NHƯ VẬY MÀ BẠN BẢO TÍNH HỢP LÍ SAO TOÀN NHỮNG PHÉP TÍNH RA SỐ TO KHỦNG MÌNH THẤY CHẲNG HỌP LÍ TÍ NÀO CẢ NÊN MÌNH KHÔNG LÀM BÀI NÀY NỮA NHƯNG NHỚ TÍCH CHO MÌNH NHA

 

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}

Bài 1 : thực hiện phép tínhx.\(\frac{1}{3}\)+ 2.x.\(\frac{3}{6}\)- 3.x.\(\frac{4}{9}\)với x = \(\frac{2011}{2012}\)Bài 2 :tìm x biết:a).x.\(\frac{1}{3}\)+\(\frac{x-2}{3}\)=1b) (x-1).(x+2)\(\le\)0Bài 3 : a) tìm các số có 3 chữ số chia hết cho 7 và tổng các chữ số của nó đều chia hết cho 7b)chứng tỏ rằng nếu a; a+k;a+2k là các số nguyên tố lớn hơn 3 thì k chia hết cho 6bài 4:1) cho 5 đường thẳng phân biệt cắt nhau tại...
Đọc tiếp

Bài 1 : thực hiện phép tính

x.\(\frac{1}{3}\)+ 2.x.\(\frac{3}{6}\)- 3.x.\(\frac{4}{9}\)với x = \(\frac{2011}{2012}\)

Bài 2 :tìm x biết:

a).x.\(\frac{1}{3}\)+\(\frac{x-2}{3}\)=1

b) (x-1).(x+2)\(\le\)0

Bài 3 : 

a) tìm các số có 3 chữ số chia hết cho 7 và tổng các chữ số của nó đều chia hết cho 7

b)chứng tỏ rằng nếu a; a+k;a+2k là các số nguyên tố lớn hơn 3 thì k chia hết cho 6

bài 4:

1) cho 5 đường thẳng phân biệt cắt nhau tại O.Hỏi có tất cả bao nhiêu góc đỉnh O tạo thanhtuwf 5 đường thẳng đó không kể góc bẹt

2) cho góc xOy và tia Oz nằm giữa 2 tai Ox và Oy. gọi Ot và Ot' là hai tia phân giác của góc xOz và zOy. chứng tỏ rằng : tot' = \(\frac{1}{2}\)xOy.

Bài 5 : chứng tỏ rằng với mọi số tự nhiên n thì A= \(^{16^n}\)- 15n - 1 chia hết cho 15.

GIÚP MÌNH VỚI NHÉ. NẾU BIẾT THÌ TRÌNH BÀY CÁCH LÀM NHÉ!

CẢM ƠN CÁC BẠN NHIỀU!

0
24 tháng 7 2020

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

...

\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)

Cộng vế theo vế 

\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)

\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)

Lại có \(\frac{7}{8}< 1\)

Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)

\(\Rightarrow B< 1\left(đpcm\right)\)