K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^2\left(x-1\right)+16\left(1-x\right)\)

\(=x^2\left(x-1\right)-16\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-16\right)\)

\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)

b) Ta có: \(5x^2-5y^2-10x+10y\)

\(=5\left(x^2-y^2\right)-10\left(x-y\right)\)

\(=5\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\cdot2\)

\(=5\left(x-y\right)\left(x+y-2\right)\)

c) Ta có: \(x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

13 tháng 8 2018

1) \(3\left(x+4\right)-x^2-4x=3\left(x+4\right)-x\left(x+4\right)=\left(x+4\right)\left(3-x\right)\)

2) \(5x^2-5y^2-10x+10y=5\left(x^2-y^2\right)-10\left(x-y\right)\)

            \(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)=\left(x-y\right)\left(5x+5y-10\right)\)

3) \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)

4) \(ax-bx-a^2+2ab-b^2=x\left(a-b\right)-\left(a^2-2ab+b^2\right)\)

                            \(=x\left(a-b\right)-\left(a-b\right)^2=\left(a-b\right)\left(x-a+b\right)\)

5) \(x^3-x^2-x+1=x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)\)

                                \(=\left(x-1\right)\left(x-1\right)\left(x+1\right)=\left(x-1\right)^2\left(x+1\right)\)

6) \(x^2+4x-y^2+4=x^2+4x+4-y^2=\left(x+2\right)^2-y^2\)

                                   \(=\left(x+2-y\right)\left(x+2+y\right)\)

14 tháng 8 2018

Phân tích các đa thức sau thành nhân tử :

1) x^3 + x^2y - 4x - 4y

2) x^3 - 3x^2 +1 - 3x

3) 3x^2 - 6xy + 3y^2 - 12z^2

4) x^2 - 2x - 15

5) 2x^2 +3x - 5

6) 2x^2 - 18

7) x^2 - 7xy + 10y^2

8) x^3 - 2x^2 + x - xy^2

Làm nhanh giúp mình với nhé .....mình đang cần gấp[[[[

19 tháng 8 2015

a/ \(=x^4+x^2+1+2x^3+2x+2x^2=\left(x^2+x+1\right)^2\)

b/ \(=y^4+\left(-2x^2-34\right)y^2+32xy+x^4-34x^2+225\)

câu này bn coi lại đc k , mk k lm ra 

29 tháng 10 2019

a) \(x^2-5xy+6y^2\)

\(=x^2-3xy-2xy+6y^2\)

\(=x\left(x-3y\right)-2y\left(x-3y\right)\)

\(=\left(x-2y\right)\left(x-3y\right)\)

b) \(16\left(x-1\right)^2-36y^2\)

\(=\left(4x-4\right)^2-\left(6y\right)^2\)

\(=\left(4x+6y-4\right)\left(4x-6y-4\right)\)

c) \(4\left(x+y\right)-12\left(x+y\right)^2\)

\(=\left(x+y\right)\left[4-12\left(x+y\right)\right]\)

\(=4\left(x+y\right)\left[1-3x-3y\right]\)

30 tháng 10 2018

\(5x^2-x+y-5y^2\)

\(=\left(5x^2-5y^2\right)-\left(x-y\right)\)

\(=5\left(x^2-y^2\right)-\left(x-y\right)\)

\(=5\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left[5\left(x+y\right)-1\right]\)

\(=\left(x-y\right)\left(5x+5y-1\right)\)

4 tháng 7 2017

\(=\left(x^2+4x-3\right)^2-5\left(x^2+4x-3\right)+6x^2\)

\(=x^4+16x^2+9+8x^3-24x-6x^2-5x^2-20x+15+6x^2\)

\(=x^4+8x^3+11x^2-44x+24\)

\(=\left(x^4-x^3\right)+\left(9x^3-9x^2\right)+\left(20x^2-20x\right)-\left(24x-24\right)\)

\(=x^3\left(x-1\right)+9x^2\left(x-1\right)+20x\left(x-1\right)-24\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+9x^2+20x-24\right)\)

(4x2)(10x+4)(5x+7)(2x+1)+17=0(4x−2)(10x+4)(5x+7)(2x+1)+17=0

(4x2)(5x+7)(10x+4)(2x+1)+17=0⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0

(20x2+18x14)(20x2+18x+4)+17=0⇔(20x2+18x−14)(20x2+18x+4)+17=0

Đặt t= 20x2+18x+4(t0)20x2+18x+4(t≥0) ta có:

(t-18).t +17=0

t218t+17=0⇔t2−18t+17=0

(t17)(t1)=0⇔(t−17)(t−1)=0

[t=17(tm)t=1(tm)⇔[t=17(tm)t=1(tm) [20x2+18x+4=1720x2+18x+4=1[20x2+18x13=020x2+18+3=0⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0

[(20x+9341)(20x+9+341)=0(20x+921)(20x+9+21)=0⇔[(20x+9−341)(20x+9+341)=0(20x+9−21)(20x+9+21)=0

x=9+34120x=934120x=9+2120x=92120

6 tháng 6 2019

\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)

\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)

\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)

Đặt ....

13 tháng 10 2018

a) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+3\right)\left(x+2\right)\)

b) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-3\right)\left(x-1\right)\)

c) \(x^2+5x+4=x^2+x+4x+4=x\left(x+1\right)+4\left(x+1\right)=\left(x+4\right)\left(x+1\right)\)

d) \(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)

13 tháng 10 2018

cảm ơn nha

25 tháng 6 2018

a) \(\frac{1}{4}x^2-5xy+25y^2=\left(\frac{1}{2}x\right)^2-5xy+\left(5y\right)^2\)

\(=\left(\frac{1}{2}x-5y\right)^2\)

b) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)

\(=\left(7x-4+2x+1\right)\times\left(7x-4-2x-1\right)=\left(9x-3\right)\times\left(5x-5\right)\)

\(=3\times5\times\left(3x-1\right)\times\left(x-1\right)=15\times\left(3x-1\right)\times\left(x-1\right)\)

c)\(\left(x-2\right)^2-4y^2=\left(x-2-2y\right)\left(x-2+2y\right)\)

d) \(125-x^6=5^3-\left(x^2\right)^3=\left(5-x^2\right)\left(25+5x^2+x^4\right)\)

4 tháng 1 2019

\(A=\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)

\(A=\left[\left(x+1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x+2\right)\right]+4x^2\)

\(A=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)

Đặt \(p=x^2-4,5x-8\)ta có :

\(A=\left(p-2,5x\right)\left(p+2,5x\right)+4x^2\)

\(A=p^2-\left(2,5x\right)^2+4x^2\)

\(A=p^2-6,25x^2+4x^2\)

\(A=p^2-2,25x^2\)

\(A=p^2-\left(1,5x\right)^2\)

\(A=\left(p-1,5x\right)\left(p+1,5x\right)\)

Thay \(p=x^2-4,5x-8\)vào A ta có :

\(A=\left(x^2-4,5x-8-1,5x\right)\left(x^2-4,5x-8+1,5x\right)\)

\(A=\left(x^2-6x-8\right)\left(x^2-3x-8\right)\)

4 tháng 1 2019

\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)

\(=\left(x+1\right)\left(x-8\right)\left(x-4\right)\left(x+2\right)+4x^2\)

\(=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)

  Đặt \(x^2-2x-8=t\)

  Ta có : \(\left(t-5x\right)t+4x^2\)

\(=t^2-5xt+4x^2\)

\(=t^2-2.\frac{5}{2}xt+\frac{25}{4}x^2-\frac{9}{4}x^2\)

\(=\left(t-\frac{5}{2}\right)^2-\frac{9}{4}x^2\)

\(=\left(t-\frac{5}{2}-\frac{3}{2}x\right)\left(t-\frac{5}{2}+\frac{3}{2}x\right)\)

    Học tốt ~~