K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

d)

$x^4+2x^3+2x^2+2x+1$

$=(x^4+2x^3+x^2)+(x^2+2x+1)$

$=(x^2+x)^2+(x+1)^2=x^2(x+1)^2+(x+1)^2$

$=(x+1)^2(x^2+1)$

e)

$x^2y+xy^2+x^2z+y^2z+2xyz$

$=xy(x+y)+z(x^2+y^2)+2xyz$

$=xy(x+y)+z(x^2+y^2+2xy)$

$=xy(x+y)+z(x+y)^2=(x+y)(xy+zx+zy)$

f)

$x^5+x^4+x^3+x^2+x+1$

$=(x^5+x^4)+(x^3+x^2)+(x+1)=x^4(x+1)+x^2(x+1)+(x+1)$

$=(x+1)(x^4+x^2+1)$

$=(x+1)[(x^4+2x^2+1)-x^2]$

$=(x+1)[(x^2+1)^2-x^2]=(x+1)(x^2+1-x)(x^2+1+x)$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

a)

$x^4-2x^3+2x-1=(x^4-2x^3+x^2)-(x^2-2x+1)$

$=(x^2-x)^2-(x-1)^2$

$=x^2(x-1)^2-(x-1)^2=(x-1)^2(x^2-1)=(x-1)^2(x-1)(x+1)$

$=(x-1)^3(x+1)$

b)

$a^6-a^4+2a^3+2a^2$

$=a^4(a^2-1)+2a^2(a+1)$

$=a^4(a-1)(a+1)+2a^2(a+1)$

$=(a+1)[a^4(a-1)+2a^2]$

$=a^2(a+1)[a^2(a-1)+2]$

$=a^2(a+1)(a^3-a^2+2)=a^2(a+1)[a^2(a+1)-2(a^2-1)]$

$=a^2(a+1)[a^2(a+1)-2(a-1)(a+1)]$

$=a^2(a+1)(a+1)(a^2-2a+2)=a^2(a+1)^2(a^2-2a+2)$

c)

$x^4+x^3+2x^2+x+1$

$=(x^4+2x^2+1)+(x^3+x)$

$=(x^2+1)^2+x(x^2+1)=(x^2+1)(x^2+1+x)$

18 tháng 6 2016

a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)

b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)

c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)

d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2

= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)

e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)

f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)

g) chắc là 3xyz 

= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)

h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)

i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy

k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).

2 tháng 8 2020

chữ mình nó không được đẹp cho lắm, thông cảm

2 tháng 8 2020
https://i.imgur.com/tmaToim.png
19 tháng 6 2016

a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1

=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1

=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)

=(x2+x+1)(x5-x4+x3-x+1)

b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1

=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)

=(2x2-6x+1)(2x2+6x+1)

c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)

d)3(x4+x2+1)-(x2+x+1)

=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2

=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)

=(x2+x+1)(3x2-3x+2)

e)bạn tự làm nhé

a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)

\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)

\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)

\(=5\cdot\left(1-2xy^2\right)\)

\(=5-10xy^2\)

b) Ta có: \(9x^2-\left(3x-4\right)^2\)

\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)

\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)

\(=4\cdot\left(6x-4\right)\)

\(=24x-16\)

c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)

\(=a^2-b^4\)

d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

\(=a^4+4a^3+4a^2-9\)

e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)

\(=x^2-y^2+12y-36\)

f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)

\(=\left(y-3\right)^2-\left(2z\right)^2\)

\(=y^2-6y+9-4z^2\)

g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)

\(=\left(2y\right)^3-5^3\)

\(=8y^3-125\)

h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)

\(=\left(3y\right)^3+4^3\)

\(=27y^3+64\)

i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)

\(=\left(x-3\right)^3-\left(x-2\right)^3\)

\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)

\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)

\(=-3x^2+15x-19\)

j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

\(=6x^2y+2y^3\)

8 tháng 9 2017

Tạm thời phân tích như sau:

i) x- 2x+ 2x - 1

= (x- 1) - (2x- 2x)

= (x2 + 1).(x-1) - 2x.(x- 1)

= (x- 1).(x- 2x + 1)

j) a- a+ 2a+ 2a2 

= (a+ a2).(a- a2) + 2.(a+ a2)

= (a+ a2).(a- a+2)

k) x- x+ 2x+ x + 1 (tạm thời giải thế này)

= x3.(x - 1) + (2x + 3 - \(\frac{4}{x-1}\)).(x -1)

= (x - 1).(x+ 2x + 3 - \(\frac{4}{x-1}\))

Nếu đề là:

     x4 + x+ 2x+ x + 1

= x+ x+ x+ x + x+ 1

= x2.(x+ 1) + x.(x+ 1) + x+ 1

= (x+ 1).(x+ x + 1)

m) x2y + xy+ x2z + y2z + 2xyz

= xy.(x + y) + z.(x2 + 2xy + y2)

= xy.(x + y) + z.(x + y).(x + y)

= (x + y).(xy + xz + yz)

n) x+ x4 + x3 + x2 + x + 1

= x4.(x + 1) + x2.(x + 1) + x + 1

= (x + 1).(x4 + x2 + 1)

30 tháng 9 2018

\(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-1\right)^2\)

\(=\left(x-1\right)^3\left(x+1\right)\)

Bài 5:

a) Ta có: \(x^4+4\)

\(=x^4+4\cdot x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b) Ta có: \(x^4+64\)

\(=x^4+16x^2+64-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

c) Ta có: \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+1\)

\(=x^6\left(x^2+x+1\right)-\left(x^6-1\right)\)

\(=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x-x^3-1\right)\)

d) Ta có: \(x^8+x^4+1\)

\(=x^8+x^4+x^6-x^6+1\)

\(=x^4\left(x^4+x^2+1\right)-\left(x^6-1\right)\)

\(=x^4\left(x^4+x^2+1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

g) Ta có: \(x^4+2x^2-24\)

\(=x^4+6x^2-4x^2-24\)

\(=x^2\left(x^2+6\right)-4\left(x^2+6\right)\)

\(=\left(x^2+6\right)\left(x^2-4\right)\)

\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)

i) Ta có: \(a^4+4b^4\)

\(=a^4+4a^2b^2+4b^4-4a^2b^2\)

\(=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)

30 tháng 8 2021

ý e đâu

 

23 tháng 9 2017

. Ai đó giúp tôi đi mà ._.

28 tháng 9 2017

bài khó quá bạn ạ