Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)\(x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)\)
\(=\left(x-b\right)\left(x-a\right)\)
e)\(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(xy-1\right)\left(x+y\right)\)
f)\(ax^2+ay-bx^2-by=a\left(x^2+y\right)-b\left(x^2+y\right)\)
\(=\left(a-b\right)\left(x^2+y\right)\)
a) bạn ktra lại đề
b) \(x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)
c) \(ax+by+ay+bx=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)
d) \(x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-a\right)\left(x-b\right)\)
e) \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
f) \(ax ^2+ay-bx^2-by=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)
\(x^2y+xy+x+1\)
\(=xy\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(xy+1\right)\)
hk tốt
^^
a) \(x^3-2x^2+2x-1^3\)
\(=x\left(x^2-2x+1\right)+x-1\)
\(=x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x+1\right)\left(x-1\right)\)
b) \(x^2y+xy+x+1\)
\(=xy\left(x+1\right)+\left(x+1\right)\)
\(=\left(xy+1\right)\left(x+1\right)\)
c) \(ax+by+ay+bx\)
\(=a\left(x+y\right)+b\left(x+y\right)\)
\(=\left(a+b\right)\left(x+y\right)\)
d) \(x^2-\left(a+b\right)x+ab\)
\(=x^2-ax-bx+ab\)
\(=\left(x^2-ax\right)-\left(bx-ab\right)\)
\(=x\left(x-a\right)-b\left(x-a\right)\)
\(=\left(x-b\right)\left(x-a\right)\)
e) Ko biết làm
f) \(ax^2+ay-bx^2-by\)
\(=\left(ax^2+ay\right)-\left(bx^2+by\right)\)
\(=a\left(x^2+y\right)-b\left(x^2+y\right)\)
\(=\left(a-b\right)\left(x^2+y\right)\)
\(a,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)
\(b,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)
\(c,x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-b\right)\left(x-2\right)\)
\(d,x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
\(e,a\left(x^2+y\right)-b\left(x^2+y\right)=\left(a-b\right)\left(x^2+y\right)\)
\(f,x\left(a-2\right)-a\left(a-2\right)=\left(x-a\right)\left(a-2\right)\)
1) \(xy\left(a^2+2b^2\right)-ab\left(2x^2+y^2\right)\)
\(=a^2xy+2b^2xy-2abx^2-aby^2\)
\(=\left(a^2xy-aby^2\right)+\left(2b^2xy-2abx^2\right)\)
\(=ay\left(ax-by\right)+2bx\left(by-ax\right)\)
\(=ay\left(ax-by\right)-2bx\left(ax-by\right)\)
\(=\left(ax-by\right)\left(ay-2bx\right)\)
2) Sửa đề \(\left(xy+ab\right)^2+\left(bx-ay\right)^2\)
\(=\left(xy\right)^2+2xyab+\left(ab\right)^2+\left(bx\right)^2-2xyab+\left(ay\right)^2\)
\(=x^2y^2+a^2b^2+b^2x^2+a^2y^2\)
\(=\left(x^2y^2+b^2x^2\right)+\left(a^2b^2+a^2y^2\right)\)
\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)
\(=\left(b^2+y^2\right)\left(x^2+a^2\right)\)
3) \(\left(2xy+ab\right)^2+\left(2ay-bx\right)^2\)
\(=\left(2xy\right)^2+2.2xyab+\left(ab\right)^2+\left(2ay\right)^2-2.2xyab+\left(bx\right)^2\)
\(=4x^2y^2+4xyab+a^2b^2+4a^2y^2-4xyab+b^2x^2\)
\(=4x^2y^2+4a^2y^2+a^2b^2+b^2x^2\)
\(=4y^2\left(x^2+a^2\right)+b^2\left(a^2+x^2\right)\)
\(=\left(a^2+x^2\right)\left(4y^2+b^2\right)\)
1) \(xy\left(a^2+2b^2\right)-ab\left(2x^2+y^2\right)\)
\(=a^2xy+2b^2xy-2x^2ab-y^2ab\)
\(=\left(a^2xy-y^2ab\right)+\left(2b^2xy-2x^2ab\right)\)
\(=ay\left(ax-by\right)+2bx\left(by-ax\right)\)
\(=ay\left(ax-by\right)-2bx\left(ax-by\right)\)
\(=\left(ax-by\right)\left(ay-2bx\right)\)
2) Sửa đề \(\left(xy+ab\right)^2+\left(bx-ay\right)^2\)
\(=\left(xy\right)^2+2xyab+\left(ab\right)^2+\left(bx\right)^2-2xyab+\left(ay\right)^2\)
\(=x^2y^2+a^2b^2+b^2x^2+a^2y^2\)
\(=\left(x^2y^2+b^2x^2\right)+\left(a^2b^2+a^2y^2\right)\)
\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)
\(=\left(b^2+y^2\right)\left(a^2+x^2\right)\)
3) \(\left(2xy+ab\right)^2+\left(2ay-bx\right)^2\)
\(=\left(2xy\right)^2+2.2xyab+\left(ab\right)^2+\left(2ay\right)^2-2.2xyab+\left(bx\right)^2\)
\(=4x^2y^2+a^2b^2+4a^2y^2+b^2x^2\)
\(=\left(4x^2y^2+b^2x^2\right)+\left(4a^2y^2+a^2b^2\right)\)
\(=x^2\left(4y^2+b^2\right)+a^2\left(4y^2+b^2\right)\)
\(=\left(4y^2+b^2\right)\left(a^2+x^2\right)\)
a: \(\left(xy+ab\right)^2+\left(bx-ay\right)^2\)
\(=x^2y^2+a^2b^2+x^2b^2+a^2y^2\)
\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)
\(=\left(b^2+y^2\right)\left(x^2+a^2\right)\)