Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do d vuông góc d' nên pt d có dạng: \(x+2y-c=0\)
\(\Rightarrow\) d cắt Ox và Oy lần lượt tại \(A\left(c;0\right)\) ; \(B\left(0;\frac{c}{2}\right)\)
a/ \(\overrightarrow{AB}=\left(-c;\frac{c}{2}\right)\Rightarrow c^2+\left(\frac{c}{2}\right)^2=1\)
\(\Leftrightarrow\frac{5c^2}{4}=1\Rightarrow c=\pm\frac{2\sqrt{5}}{5}\)
\(\Rightarrow d:\left[{}\begin{matrix}x+2y+\frac{2\sqrt{5}}{5}=0\\x+2y-\frac{2\sqrt{5}}{5}=0\end{matrix}\right.\)
b/ \(OA=\left|c\right|;OB=\left|\frac{c}{2}\right|\)
\(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{4}\left|c\right|^2=\frac{1}{4}c^2\)
\(\Leftrightarrow\frac{1}{4}c^2=1\Rightarrow c=\pm2\)
\(\Rightarrow d:\left[{}\begin{matrix}x+2y+2=0\\x+2y-2=0\end{matrix}\right.\)
c/ \(\frac{2}{c^2}+\frac{1}{\left(\frac{c}{2}\right)^2}=1\)
\(\Leftrightarrow\frac{2}{c^2}+\frac{4}{c^2}=1\Leftrightarrow\frac{6}{c^2}=1\Rightarrow c=\pm\sqrt{6}\)
\(\Rightarrow d:\left[{}\begin{matrix}x+2y+\sqrt{6}=0\\x+2y-\sqrt{6}=0\end{matrix}\right.\)
Gọi \(A\left(a;0\right),\left(B;b\right)\left(a,b>0\right)\)
Pt đường thẳng cần tìm có dạng :
\(\dfrac{x}{a}+\dfrac{y}{b}=1\)
Vì đường thẳng qua M(3;2) nên:
\(\dfrac{3}{a}+\dfrac{2}{b}=1\left(1\right)\)
a) \(0A+0B=12\Leftrightarrow a+b=12\Leftrightarrow a=12-b\left(2\right)\)
Thay (2) vào (1) ta có: \(\dfrac{3}{12-b}+\dfrac{2}{b}=1\)
\(\Leftrightarrow3b+2\left(12-b\right)=\left(12-b\right)b\)
\(\Leftrightarrow b^2-11b+24=0\Leftrightarrow b=3hayb=8\)
+ Với b=3=>a=9 => \(\dfrac{x}{9}+\dfrac{y}{3}=1\Leftrightarrow x+3y-9=0\)
+ Với b=8=>a=4 => \(\dfrac{x}{4}+\dfrac{y}{8}=1\Leftrightarrow2x+y-8=0\)
b) \(S_{\Lambda OAB}=\dfrac{1}{2}0A.0B=\dfrac{1}{2}ab=12\Leftrightarrow a=\dfrac{24}{b}\left(3\right)\)
Thay (3) vào (1) ta có: \(\dfrac{3b}{24}+\dfrac{2}{b}=1\Leftrightarrow b^2+16=8b\Leftrightarrow\left(b-4\right)^2=0\Leftrightarrow b=4\)
\(\Rightarrow a=6\Rightarrow\dfrac{x}{6}+\dfrac{y}{4}=1\Leftrightarrow2x+3y-12=0\)
Do d qua M nên pt có dạng: \(y=kx-2k+4\)
Tọa độ A: \(A\left(\dfrac{2k-4}{k};0\right)\) , tọa độ B: \(B\left(0;-2k+4\right)\)
Để A và B nằm trên tia Ox, Oy \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2k-4}{k}>0\\-2k+4>0\end{matrix}\right.\) \(\Rightarrow k< 0\)
Khi đó:
\(T=OA+OB=\dfrac{2k-4}{k}+\left(-2k+4\right)=6+2\left(-k+\dfrac{2}{-k}\right)\ge6+4\sqrt{\left(-k\right)\left(\dfrac{2}{-k}\right)}=6+4\sqrt{2}\)
Dấu "=" xảy ra khi \(-k=\dfrac{2}{-k}\Leftrightarrow k=-\sqrt{2}\)
Phương trình d: \(k=-\sqrt{2}x+4+2\sqrt{2}\)
Đề bài không chính xác, chỉ có thể tìm d để biểu thức đạt GTNN chứ ko tồn tại đường thẳng để biểu thức đạt GTLN
b/
\(4OA^2+OB^2=100\)
\(\Leftrightarrow4\left(\frac{2k+3}{k}\right)^2+\left(2k+3\right)^2=100\)
\(\Leftrightarrow4k^4+12k^3-75k^2+48k+36=0\)
\(\Leftrightarrow\left(2k-3\right)\left(2k^3+9k^2-24k-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=\frac{3}{2}\\2k^3+9k^2-24k-12=0\end{matrix}\right.\)
Rất tiếc là pt đằng sau có nghiệm nhưng ko giải được
c/
\(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}\left|2k+3\right|.\left|\frac{2k+3}{k}\right|=\frac{1}{2}\left|\frac{4k^2+12k+9}{k}\right|\)
\(S_{OAB}=\frac{1}{2}\left|4k+\frac{9}{k}+12\right|\)
Biểu thức này chỉ tồn tại min chứ ko tồn tại max. Đề bài ko đúng
d/ \(\frac{3k^2}{\left(2k+3\right)^2}+\frac{2}{\left(2k+3\right)^2}=\frac{275}{36}\)
\(\Leftrightarrow36\left(3k^2+2\right)=275\left(2k+3\right)^2\)
\(\Leftrightarrow992k^2+3300k+2403=0\)
\(\Rightarrow\left[{}\begin{matrix}k=-\frac{9}{4}\\k=-\frac{267}{248}\end{matrix}\right.\)
Do đường thẳng d cắt cả Ox và Oy nên có hệ số góc và tung độ gốc khác 0
Gọi pt đường thẳng có dạng
\(y=kx+b\Rightarrow2k+b=-3\Rightarrow b=-2k-3\ne0\Rightarrow k\ne-\frac{3}{2}\)
\(\Rightarrow y=kx-2k-3\)
Giao điểm của d với Oy và Ox lần lượt là: \(B\left(0;-2k-3\right)\) ; \(A\left(\frac{2k+3}{k};0\right)\)
\(\Rightarrow OA=\left|\frac{2k+3}{k}\right|\) ; \(OB=\left|2k+3\right|\)
a/ \(OA=\frac{2}{3}OB\Leftrightarrow\left|\frac{2k+3}{k}\right|=\frac{2}{3}\left|2k+3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{2k+3}{k}=\frac{2}{3}\left(2k+3\right)\\\frac{2k+3}{k}=-\frac{2}{3}\left(2k+3\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}k=\frac{3}{2}\\k=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow y=\frac{3}{2}x-6\Leftrightarrow3x-2y-12=0\)