Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x^2+2x-3=x^2+3x-x-3=x\left(x-1\right)+3\left(x-1\right)=\left(x+3\right)\left(x-1\right)\)
2, \(x^2+3x-10=x^2+5x-2x-10=x\left(x-2\right)+5\left(x-2\right)=\left(x+5\right)\left(x-2\right)\)
3, \(x^2-x-12=x^2-4x+3x-12=x\left(x+3\right)-4\left(x+3\right)=\left(x-4\right)\left(x+3\right)\)
4, \(3x^2+4x-7=3x^2+7x-3x-7=3x\left(x-1\right)+7\left(x-1\right)=\left(3x+7\right)\left(x-1\right)\)
5, \(4x^2-9y^2-5xy=4x^2-9xy+4xy-9y^2\)
\(=4x\left(x+y\right)-9y\left(x+y\right)=\left(4x-9y\right)\left(x+y\right)\)
6, \(x^2-2x-4y^2-4y=x^2-2x+1-4y^2-4y-1=\left(x-1\right)^2-\left(2y+1\right)^2\)
\(=\left(x-1-2y-1\right)\left(x-1+2y+1\right)=\left(x-2y-2\right)\left(x+2y\right)\)
Bài 1 :
a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)
\(=15x^3-6x^2-3x\)
b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)
\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)
\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)
d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)
\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)
\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)
e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)
= \(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)
\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)
Bài 2 :
3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15
Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)
\(=-\frac{15}{2}-3+15=\frac{9}{2}\)
b) 25x - 4(3x - 1) + 7(5 - 2x)
= 25x - 12x + 4 + 35 - 14x
= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39
Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37
c) 4x - 2(10x + 1) + 8(x - 2)
= 4x - 20x - 2 + 8x - 16
= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18
Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)
d) Tương tự
Bài 3:
a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)
=> 2x2 - 8x - 2x2 - 3x = 4
=> (2x2 - 2x2) + (-8x - 3x) = 4
=> -11x = 4
=> x = \(-\frac{4}{11}\)
b) x(5 - 2x) + 2x(x - 7) = 18
=> 5x - 2x2 + 2x2 - 14x = 18
=> 5x - 14x = 18
=> -9x = 18
=> x = -2
Còn 2 câu làm tương tự
Bài 1:
a) Ta có: \(\left(15x^2\cdot y^2\cdot z\right):3xyz\)
\(=\dfrac{15x^2y^2z}{3xyz}\)
\(=5xy\)
b) Ta có: \(3x^2\cdot\left(5x^2-4x+3\right)\)
\(=3x^2\cdot5x^2-3x^2\cdot4x+3x^2\cdot3\)
\(=15x^4-12x^3+9x^2\)
c) Ta có: \(\left(2x^2-3x\right):\left(x-4\right)\)
\(=\dfrac{2x^2-8x+5x-20+20}{x-4}\)
\(=\dfrac{2x\left(x-4\right)+5\left(x-4\right)+20}{x-4}\)
\(=2x+5+\dfrac{20}{x-4}\)
d) Ta có: \(-5xy\cdot\left(3x^2y-5xy+y^2\right)\)
\(=-5xy\cdot3x^2y+5xy\cdot5xy-5xy\cdot y^2\)
\(=-15x^3y^2+25x^2y^2-5xy^3\)
\(A=\left(5x^5+5x^4\right):5x^2-\left(2x^4-8x^2-6x+12\right):\left(2x-4\right)\)
Phép chia thứ nhất:
\(\left(5x^5+5x^4\right):5x^2=x^3+x^2\)
Phép chia thứ hai:
2x^4 - 4x^3 - 2x^4 - 8x^2 - 6x + 12 - 4x^3 - 8x^2 4x^3 - 8x^2 - 6x + 12 - -6x + 12 -6x + 12 0 2x - 4 x^3 - 2x^2 - 3
Vậy A = ( x^3 + x^2 ) - ( x^3 + 2x^2 - 3 ) = -x^2 + 3
Với x = -2 thì: A = -(-2)^2 + 3 = -4 + 3 = -1
B) bạn làm tương tự nhé
Trả lời:
a, 5x2 + 10xy + 5y2 = 5 ( x2 + 2xy + y2 ) = 5 ( x + y )2
b, x2 + 3x - y2 + 3y = ( x2 - y2 ) + ( 3x + 3y ) = ( x - y )( x + y ) + 3 ( x + y ) = ( x + y )( x - y + 3 )
c, x2 + 5x - y2 + 5y = ( x2 - y2 ) + ( 5x + 5y ) = ( x - y )( x + y ) + 5 ( x + y ) = ( x + y )( x - y + 5 )
d, 3x2 - 3y2 - 2 ( x - y )2 = 3 ( x2 - y2 ) - 2 ( x - y )2 = 3 ( x - y )( x + y ) - 2 ( x - y )2 = ( x - y )[ 3 ( x + y ) - 2 ] = ( x - y )( 3x + 3y - 2 )
e, x2 - 2x - 4y2 - 4y = ( x2 - 4y2 ) - ( 2x + 4y ) = ( x - 2y )( x + 2y ) - 2 ( x + 2y ) = ( x + 2y )( x - 2y - 2 )
a) 5x2+10xy+5y2
=5(x2+2xy+y2)
=5(x+y)2
b) x2+3x-y2+3y
=(x2-y2)+(3x+3y)
=(x-y)(x+y)+3(x+y)
=(x+y)(x-y+3)
c) x2+5x-y2+5y
=(x2-y2)+(5x+5y)
=(x-y)(x+y)+5(x+y)
=(x+y)(x-y+5)
d) 3x2-3y2-2(x-y)2
=3(x2-y2)-2(x-y)2
=3(x-y)(x+y)-2(x-y)2
=(x-y)[3(x+y)-2(x-y)]
e) x2-2x-4y2-4y
=(x2-4y2)-(2x+4y)
=(x-2y)(x+2y)-2(x+2y)
=(x+2y)(x-2y-2)
#H
Trả lời:
5, x2 - y2 + 4x + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y ) ( x + 2 + y )
6, x2 + 2x - 4y2 - 4y
= ( x2 - 4y2 ) + ( 2x - 4y )
= ( x - 2y ) ( x + 2y ) + 2 ( x - 2y )
= ( x - 2y ) ( x + 2y + 2 )
7, 3x2 - 4y + 4x - 3y2
= ( 3x2 - 3y2 ) + ( 4x - 4y )
= 3 ( x2 - y2 ) + 4 ( x - y )
= 3 ( x - y ) ( x + y ) + 4 ( x - y )
= ( x - y ) [ 3 ( x + y ) + 4 ]
= ( x - y ) ( 3x + 3y + 4 )
8, x4 - 6x3 + 54x - 81
= ( x4 - 81 ) - ( 6x3 - 54x )
= ( x2 - 9 ) ( x2 + 9 ) - 6x ( x2 - 9 )
= ( x2 - 9 ) ( x2 + 9 - 6x )
= ( x - 3 ) ( x + 3 ) ( x - 3 )2
= ( x - 3 )3 ( x + 3 )
a, \(x^2-y^2+4x+4=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)
b, \(x^2+2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)+2\left(x-2y\right)=\left(x-2y\right)\left(x+2+2y\right)\)
c, \(3x^2-4y+4x-3y^2=3\left(x-y\right)\left(x+y\right)-4\left(y-x\right)=\left(x-y\right)\left(3x+3y+4\right)\)
d, \(x^4-6x^3+54x-81=\left(x^2+9\right)\left(x-3\right)\left(x+3\right)-6x\left(x^2-9\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x^2-6x+9\right)=\left(x-3\right)^3\left(x+3\right)\)
f) = x2( x - 4 ) - 9( x - 4 ) = ( x - 4 )( x - 3 )( x + 3 )
g) = 4( x - y ) + ( x - y )2 = ( x - y )( x - y + 4 )
h) = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i) = ( x - y )( x + y ) - 4( x + y ) = ( x + y )( x - y - 4 )
j) = ( x - y )( x2 + xy + y2 ) - 3( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
Trả lời:
f, x3 - 4x2 - 9x + 36 = ( x3 - 4x2 ) - ( 9x - 36 ) = x2 ( x - 4 ) - 9 ( x - 4 ) = ( x - 4 )( x2 - 9 ) = ( x - 4 )( x - 3 )( x + 3 )
g, 4x - 4y + x2 - 2xy + y2 = ( 4x - 4y ) + ( x2 - 2xy + y2 ) = 4 ( x - y ) + ( x - y )2 = ( x - y ) ( 4 + x - y )
h, x4 + x3 + x2 - 1 = ( x4 + x3 ) + ( x2 - 1 ) = x3 ( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i, x2 - y2 - 4x - 4y = ( x2 - y2 ) - ( 4x + 4y ) = ( x - y )( x + y ) - 4 ( x + y ) = ( x + y )( x - y - 4 )
j, x3 - y3 - 3x + 3y = ( x3 - y3 ) - ( 3x - 3y ) = ( x - y )( x2 + xy + y2 ) - 3 ( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
\(1,x^2-y^2+4x-4y\)
\(\left(x-y\right)\left(x+y\right)+4\left(x-y\right)\)
\(\left(x-y\right)\left(x+y+4\right)\)
\(x^2+2x-4y^2-4y\)
\(\left(x-2y\right)\left(x+2y\right)+2\left(x-2y\right)\)
\(\left(x-2y\right)\left(x+2y+2\right)\)
\(3,3x^2-4y+4x-3y^2\)
\(3\left(x^2-y^2\right)-4\left(x-y\right)\)
\(3\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\)
\(\left(x-y\right)\left(3x+3y-4\right)\)
\(x^4-6x^3+54x-81\)
\(x^4+3x^3-9x^3+27x^2-27x^2+81x-27x-81\)
\(\left(x^4+3x^3\right)-\left(9x^3+27x^2\right)+\left(27x^2+81x\right)-\left(27x+81\right)\)
\(x^3\left(x+3\right)-9x^2\left(x+3\right)+27x\left(x+3\right)-27\left(x+3\right)\)
\(\left(x+3\right)\left(x^3-9x^2+27x-27\right)\)
\(\left(x+3\right)\left(x-3\right)^3\)
a.( 5x2-4x).(x-3)=5x3-15x2-4x2+12x=5x3-11x2+12x
b.(2-3xy).(3x4+4y2+5xy)=6x4+8y2+10xy-9x5y-12xy3-15x2y2
c.(-3x2+x+1).(x2+x-5)=-3x4-3x3+15+x3+x2-5x+x2+x-5=-3x4-2x3+2x-4x+10