Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)
\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)
-3x2-5x-2=0
Ta có :-3-(-5)-2=0
=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)
Thay x1;x2 vào M ta được:
M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)
=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)
=\(-\frac{64}{15}\)
a /
xét ten ta ;(1-2m)^2 - 4(m-3) >0
<=>1-4m+4m^2-4m+12
<=>4m^2 +13 luông đúng với mọi m tham số => phương trình có 2 nhiệm phân biệt x1 x2
cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất
\(x^2-2mx+m^2-m+4=0\)
a/ ( a = 1; b = -2m; c = m^2 - m + 4 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)
\(=4m^2-4m^2+4m-16\)
\(=4m-16\)
Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=S^2-2P-P\)
\(=S^2-3P\)
\(=\left(2m\right)^2-3\left(m^2-m+4\right)\)
\(=4m^2-3m^2+3m-12\)
\(=m^2+3m-12\)
\(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)
\(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)
Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)
a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
để pt có ng khi Δ > 0 & Δ=0
=> m> hoặc = 4
Theo Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m+3}{2}&x_1.x_2=\frac{m}{2}&\end{cases}}\)
ĐĂT \(A=!x_1-x_2!\)
\(\Rightarrow A^2=\left(!x_1-x_2!\right)=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=\frac{\left(m+3\right)^2}{2^2}-\frac{4m}{2}\)
\(\Leftrightarrow4A^2=m^2-8m+16-16-9\)
\(\Leftrightarrow4A^2=\left(m-4\right)^2-25\ge25\)
\(Min4A^2=25\Rightarrow MinA=\frac{1}{2}\Leftrightarrow\left(m-4\right)^2=0\Leftrightarrow m=4\) gía trị cần tìm
Vậy m=4 là giá trị cần tìm
\(\Leftrightarrow4A^2=m^2-2m+9\)
\(\Leftrightarrow4A^2=\left(m-1\right)+8\ge8\)
\(Min4A^2=8\Rightarrow MinA=\sqrt{2}\)
\(Khi\left(m-1\right)^2=0\Leftrightarrow m=1\)
Vậy \(m=1\)là giá trị cần tìm
áp dụng hệ thức viet ta có :
\(x_1+x_2=-5\)
\(x_1x_2=-36\)
a, đặt bt = A
\(\Rightarrow A< 0\)
\(A=x_1x_2\left(x_1-x_2\right)=-36\left(x_1-x_2\right)\)
\(\Leftrightarrow\frac{A}{-36}=x_1-x_2\)
\(\Leftrightarrow\left(\frac{A}{-36}\right)^2=\left(x_1-x_2\right)^2\)( do 2 vế đều dương)
\(=\left(x_1+x_2\right)^2-4x_1x_2=\left(-5\right)^2-4\left(-36\right)=169\)
\(\Leftrightarrow\frac{A}{-36}=\sqrt{169}=13\)
\(\Leftrightarrow A=-468\)
b, đặt bt = B
\(B+4=2+\frac{2x_1+1}{x_2+2}+2+\frac{2x_2+1}{x_1+2}=\frac{2\left(x_1+x_2\right)+5}{x_2+2}+\frac{2\left(x_1+x_2\right)+5}{x_1+2}\)
\(=\left(2\left(x_1+x_2\right)+5\right)\left(\frac{1}{x_1+2}+\frac{1}{x_2+2}\right)\)
\(=\left(-2.5+5\right)\frac{x_1+x_2+4}{\left(x_1+2\right)\left(x_2+2\right)}=\left(-5\right).\frac{-5+4}{x_1x_2+2\left(x_1+x_2\right)+4}=\frac{5}{-36-2.5+4}=-\frac{5}{42}\)
\(\Leftrightarrow B=-\frac{173}{42}\)
mk làm hơi tắt 1 chút nếu không hiểu thì hỏi lại nha
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-2+\sqrt{2}\end{matrix}\right.\)
\(A=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-1}{-2+\sqrt{2}}=\dfrac{2+\sqrt{2}}{2}\)
\(B=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-1\right)^2-2\left(-2+\sqrt{2}\right)=5-2\sqrt{2}\)