Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = ( 3x )3 + 23 - 27x3 + 6 = 27x3 + 8 - 27x3 + 6 = 14 ( đpcm )
B = x3 + 3x2 + 3x + 1 - ( x3 - 1 ) - 3x2 - 3x = x3 + 1 - x3 + 1 = 2 ( đpcm )
C = 6( x + 2 )( x2 - 2x )( x2 - 2x + 4 ) - 6x3 - 2 ( bạn xem lại đề bài nhé ._. )
D = 2[ ( 3x )3 + 13 ] - 54x3 = 2( 27x3 + 1 ) - 54x3 = 54x3 + 2 - 54x3 = 2 ( đpcm )
x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x)
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1]
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4
Vay gia tri nho nhat P=4 khi x=1
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4]
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2
Vay gia tri nho nhat Q= -9/2 khi x= 3/2
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4
= ( x-1/2)^2 + (y+3)^2 +3/4
M>= 3/4
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7]
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7
Vay GTLN A=7 khi x=2
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4]
GTLN B= 1/4 khi x=1/2
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4)
= -2[(x-1/2)^2 +9/4]
GTLN N= -9/2 khi x=1/2
A = (x - 2)(x2 + 2x + 4) - x(x - 2)(x + 2) - 2(2x + 1)
= x(x2 + 2x + 4) - 2(x2 + 2x + 4) - x(x2 - 4) - 2(2x + 1)
= x3 + 2x2 + 4x - 2x2 - 4x - 8 - x3 + 4x - 4x - 2
= (x3 - x3) + (2x2 - 2x2) + (4x - 4x + 4x - 4x) + (-8 - 2) = -10 => không phụ thuộc vào x
B = (x + 1)3 - x(x - 2)2 - 7(x2 + 1) - (1 - x) + 2
= x3 + 3x2 + 3x + 1 - x(x - 2)(x - 2) - 7x2 - 7 - 1 + x + 2
= x3 + 3x2 + 3x + 1 - x(x2 - 4x + 4) - 7x2 - 7 - 1 + x + 2
= x3 + 3x2 + 3x + 1 - x3 + 4x2 - 4x - 7x2 - 7 - 1 + x + 2 = (x3 - x3) + (3x2 + 4x2 - 7x2) + (3x - 4x + x) + (1 - 7 - 1 + 2) = - 5 => không phụ thuộc vào x
Lời giải :
1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)
\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)
\(=\frac{a^3}{4}+3ab^2\)
Lời giải :
2. \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy...
1) \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)
\(=\left(\frac{a}{2}+b\right)^2+\left(\frac{a}{2}-b\right)^2\)
\(=\left(\frac{a}{2}+b\right)\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{b}b+b^2\right]+\left(\frac{a}{2}-b\right)\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)
\(=\frac{a}{2}\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+b\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+\frac{a}{2}\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)\(-b\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)
\(=\frac{a^3}{8}+\frac{a^2b}{2}+\frac{ab^2}{2}+\frac{ba^2}{4}+b^2a+b^3+\frac{a^3}{8}-\frac{a^2b}{2}+\frac{ab^2}{2}-\frac{ba^2}{4}+b^2a-b^3\)
\(=\frac{a^3}{4}+3ab^2\)
2) \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x^3-3x^2.1+3.x.1^2-1^3=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=0-1\)
\(\Rightarrow x=-1\)
3) \(A=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(A=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)
\(A=8\)
Vậy: biểu thức không phụ thuộc vào biến
1) \(\left(x+5\right)^3-x^3-125\)
\(=\left(x+5\right)\left(x^2+2x.5+5^2\right)-x^3-125\)
\(=x\left(x^2+2x.5+5^2\right)+5\left(x^2+2x.5+5^2\right)-x^3-125\)
\(=x^3+10x^2+25x+5x^2+50x+125-x^3-125\)
\(=15x^2+75x\)
2) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-4x^2+4x-2x^2+8x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow24x+10=0\)
\(\Leftrightarrow24x=0-10\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\frac{10}{24}=-\frac{5}{12}\)
\(\Rightarrow x=-\frac{5}{12}\)
3) \(\left(x-1\right)^3-x^3+3x^2-3x+1\)
\(=\left(x-1\right)\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)
\(=x\left(x^2-2x+1\right)-\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)
\(=x^3-2x^2+x-x^2+2x-1-x^3-3x^2-3x+1\)
\(=0\)
Vậy: biểu thức không phụ thuộc vào biến
P = ( x + 2 )3 + ( x - 2 )3 - 2x( x2 + 12 )
= x3 + 6x2 + 12x + 8 + x3 - 6x2 + 12x - 8 - 2x3 - 24x
= ( x3 + x3 - 2x3 ) + ( 6x2 - 6x2 ) + ( 12x + 12x - 24x ) + ( 8 - 8 )
= 0
Vậy giá trị của P không phụ thuộc vào biến
Q = ( x - 1 )3 - ( x + 1 )3 + 6( x + 1 )( x - 1 )
= x3 - 3x2 + 3x - 1 - ( x3 + 3x2 + 3x + 1 ) + 6( x2 - 1 )
= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6
= ( x3 - x3 ) + ( 6x2 - 3x2 - 3x2 ) + ( 3x - 3x ) + ( -1 - 1 - 6 )
= -8
Vậy giá trị của Q không phụ thuộc vào biến