K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

a) \(16x^2+8xy+y^2=\left(4x+y\right)^2\)

b) \(4x^2-2xy+\dfrac{1}{4}y^2=\left(2x-\dfrac{1}{2}y\right)^2\)

c) \(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)

d) \(9x^2-6xy+y^2=\left(3x-y\right)^2\)

Bài 1: 

a: \(=x^2-2xy+y^2-x^2+2xy=y^2\)

b: \(=x^2-2xy+y^2+x^2+2xy-x^2-2xy-y^2\)

\(=x^2-2xy\)

Bài 3: 

a: \(\Leftrightarrow x^2-4-7=x^2-2x+1\)

=>-2x+1=-11

=>-2x=-12

hay x=6

b: =>(x-3)(x-3-x-3)=0

=>x-3=0

hay x=3

9 tháng 8 2020

C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2

C2. ( x + 2 )2 = ( 2x - 1 )2

<=> ( x + 2 )2 - ( 2x - 1 )2 = 0

<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0

<=> [ 3x + 1 ][ 3 - x ] = 0

<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)

b) ( x + 2 )2 - x + 4 = 0

<=> x2 + 4x + 4 - x + 4 = 0

<=> x2 - 3x + 8 = 0

Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x 

=> Phương trình vô nghiệm

C3. a) A =  x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 , đạt được khi x = 2

b)B =  x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy BMin = 3/4, đạt được khi x = 1/2

c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 36 

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " xảy ra <=> x2 + 5x = 0

                          <=> x( x + 5 ) = 0

                          <=> x = 0 hoặc x + 5 = 0

                          <=> x = 0 hoặc x = -5

Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5

d) D =  x2 + 5y2 - 2xy + 4y + 3

= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

= ( x - y )2 + ( 2y + 1 )2 + 2

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)

=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

Vậy DMin = 2 , đạt được khi x = y = -1/2

C4.  a) ( Cái này tìm được Min k tìm được Max )

A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = -6 , đạt được khi x = 2

b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)

Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4

Vậy BMax = 49/8 , đạt được khi x = -3/4

c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9 

\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy CMax = 9 , đạt được khi x = -1

d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )

C5. a) A = 25x2 - 20x + 7

A = 25x2 - 20x + 4 + 3

A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )

b) B = 9x2 - 6xy + 2y2 + 1

B = ( 9x2 - 6xy + y2 ) + y2 + 1

B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )

c) C = x2 - 2x + y2 + 4y + 6 

C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1

C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )

d) D = x2 - 2x + 2 

D = x2 - 2x + 1 + 1

D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )

30 tháng 7 2018

từ từ ít ít từng câu thôi bạn ơi

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

20 tháng 9 2017

a, \(6x-9-x^2\Leftrightarrow-\left(x^2-2.x.3+3^2\right)\Leftrightarrow-\left(x-3\right)^2\)

20 tháng 9 2017

d, \(x^2-2xy+y^2-z^2\Leftrightarrow\left(x^2-2xy+y^2\right)-z^2\Leftrightarrow\left(x-y\right)^2-z^2\Leftrightarrow\left(x-y+z\right)\left(x-y-z\right)\)

2 tháng 1 2020

x2 - 2xy + y2 - x2

= (x - y)2 - x2

= (x - y -x) (x - y + x)

= -y(2x -y)

x2 - 2xy - 4x2 + y2

= (x2 - 2xy + y2) - 4x2

= (x - y)2 - 4x2

= (x - y - 2x)(x - y +2x)

(2x + 1 )2 - ( x - 1)2

= (2x + 1 - x + 1)(2x + 1 + x - 1)

= 3x( x + 2)

4a2 - 4a + 1

= (2a - 1)2

-9x2 + 6xy - y2

= - (9x2 - 6xy + y2)

= - (3x - y)2

-6x + 9 + x2

= x2 - 6x + 9

= (x - 3)2

4x2 - 4x + 1 - y2

= (2x - 1)2 - y2

= (2x - 1 - y2)(2x - 1 + y2)

21 tháng 7 2017

a) \(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)

b) \(16x^2-8x+1=\left(4x\right)^2-2.4x.1+1^2=\left(4x-1\right)^2\)

c) \(9x^2+6x+1=\left(3x\right)^2+2.3x.1+1^2=\left(3x+1\right)^2\)

d) \(36x^2+36x+9=\left(6x\right)^2+2.6x.3+3^2=\left(6x+3\right)^2\)

e) \(x^3+27=x^3+3^3=\left(x+3\right)\left(x^2-3x+9\right)\)

mấy cái đây chỉ cần áp dụng hằng đẳng thức thôi nhé!!!
câu a hình như là 2xy chứ ko phải 4xy nhé bạn

nhớ sửa lại !!!

14 tháng 6 2017

a,\(\left(x+y\right)^2=x^2+2xy+y^2\)

\(b,\left(x-5y\right)\left(x+5y\right)=x^2-25y^2\)

\(c,\left(5-3x\right)^2=25-30x+9x^2\)

\(d,x^2+6x+9=\left(x+3\right)^2\)

\(e,x^2y^4+2xy^2+1=\left(xy^2+1\right)^2\)