\(^2\)+x+1)=x\(^3\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023

`1,`

Cách 1: Chứng minh theo hằng đẳng thức

`(x-1)(x^2+x+1)=x^3-1^3=x^3-1`

Cách 2: Chứng minh theo tích chất phân phối

`(x-1)(x^2+x+1)=x(x^2+x+1)-(x^2+x+1)=x^3+x^2+x-x^2-x-1=x^3-1`

........

`2,` Xem lại đề

29 tháng 10 2017

1,Thực hiện phép tính :

a, (x + 2)9 : (x + 2)6

=(x+2)9-6

=(x+2)3

b, (x - y) 4 : (x - 2)3

=(x-y)4-3

=x-y

c, ( x2+ 2x + 4)5 : (x2 + 2x + 4)

=(x2+2x+4)5-1

=(x2+2x+4)4

d, 2(x2 + 1)3 : 1/3(x2 + 1)

=(2÷1/3).[(x2+1)3÷(x2+1)]

=6(x2+1)2

e, 5 (x - y)5 : 5/6 (x - y)2

=(5÷5/6).[(x-y)5÷(x-y)2]

=6(x-y))3

a: \(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

=-65

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

=27

c: \(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

d: \(=x^3-3x^2+3x-1-x^3+1-3x\left(1-x\right)\)

\(=-3x^2+3x-3x+3x^2=0\)

1 tháng 10 2018

các bạn giúp mính nhé

1 tháng 12 2017

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\)

\(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

1, Thực hiện phép tính : a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\) b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\) c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\) d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\) e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\) f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\) g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\) h, \(\dfrac{2}{x+y}\)...
Đọc tiếp

1, Thực hiện phép tính :

a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)

b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)

c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)

d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)

e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)

f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)

g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)

h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)

i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)

2, Thực hiện phép tính :

a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)

b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)

c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)

d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)

1
13 tháng 11 2017

Bài 2 .

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) Sai đề hay sao ý

c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)

d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

.....

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

21 tháng 8 2018

a,

\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)

\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)

21 tháng 8 2018

b,

\(x^2+y^2=\left(x-y\right)^2+2xy=1+12=13\)

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1\cdot\left(13+6\right)=19\)

13 tháng 9 2017

sửa câu A bài 1

a, 5(3x\(^2\) - 4y\(^2\) ) - [ 9( 2x\(^2\) - y\(^3\) ) - 2 ( x\(^2\) - 5y\(^3\) ) ]

19 tháng 10 2018

Bài 1. Rút gọn:

\(a, x\left(1-x\right)+6\left(x+3\right)\left(x+3\right)\)

\(=x-x^2+6\left(x^2+6x+9\right)\)

\(=x-x^2+6x^2+36x+54\)

\(=5x^2+37x+54\)

\(b, \left(2-3x\right)\left(2+3x\right)-\left(x+5\right)\left(x-5\right)\)

\(=\left(4-9x^2\right)-\left(x^2-25\right)\)

\(=-10x^2+29\)

\(c, \left(3x+1\right)\left(x+5\right)-\left(x-1\right)\left(x+1\right)\)

\(=3x^2+15x+x+5-x^2+1\)

\(=2x^2+16x+6\)

\(d,\left(2-3x\right)\left(2x+3\right)+6\left(x-1\right)^2\)

\(=\left(4x+6-6x^2-9x\right)+6\left(x^2-2x+1\right)\)

\(=4x+6-6x^2-9x+6x^2-12x+6\)

\(=-17x+12\)

\(e, x\left(5-x\right)-\left(2x+2\right)\left(3x+2\right)-\left(x-2\right)\left(x+2\right)\)

\(=5x-x^2-\left(6x^2+4x+6x+4\right)-\left(x^2-4\right)\)

\(=5x-x^2-6x^2-4x-6x-4-x^2+4\)

\(=-8x^2-5x\)

25 tháng 10 2022

Bài 2: 

a: VT\(=x^3-xy+x^2y^2-y^3-x^3+y^3-x^2y^2\)

=-xy

b: \(VT=x^2+6xy+9y^2-x^2+9y^2-6xy=18y^2=VP\)

17 tháng 7 2018

1/ a/ \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)\left(x^2+2xy+b^2\right)=x^3+2x^2y+x^2y+xy^2+2xy^2+y^3=x^3+3x^2y+3xy^2+y^3\)

b/ \(\left(x-y\right)^3=\left(x-y\right)\left(x-y\right)^2=\left(x-y\right)\left(x^2-2xy+y^2\right)=x^3-2x^2y-x^2y+2xy^2+xy^2-y^3=x^3-3x^2y+3xy^2+y^3\)2/

a/ \(x\left(8x-2\right)-8x^2+12=0\)

\(\Leftrightarrow8x^2-2x-8x^2+12=0\)

\(\Leftrightarrow-2x+12=0\)

\(\Leftrightarrow x=6\)

Vậy ...

b/ \(\left(x-1\right)^3-x\left(x^2-3x+1\right)=18\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3+3x^2-x=18\)

\(\Leftrightarrow2x-1=18\)

\(\Leftrightarrow x=\dfrac{19}{2}\)

Vậy...

3/ a, \(25-x^2=5^2-x^2=\left(5-x\right)\left(5+x\right)\)

b/ \(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\)

c/ \(9x^2+6xy+y^2=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)