K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

Giải bài 65 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có EB = EA, FB = FC (gt)

⇒ EF là đường trung bình của ΔABC

⇒EF // AC và EF = AC/2 (1)

HD = HA, GD = GC

⇒ HG là đường trung bình của ΔADC

⇒ HG // AC và HG = AC/2 (2)

Từ (1) và (2) suy ra EF // HG và EF = HG

⇒ Tứ giác EFGH là hình bình hành (*)

EA = EB, HA = HD ⇒ EH là đường trung bình của ΔABD ⇒ EH // BD.

Mà EF // AC, AC ⊥ BD

⇒ EH ⊥ EF ⇒ Ê = 90º (**)

Từ (*) và (**) suy ra EFGH là hình chữ nhật.

30 tháng 6 2017

Hình chữ nhật

25 tháng 10 2017

Hình chữ nhật

7 tháng 10 2018

Sử dụng tính chất đường trung bình của tam giác

Chứng minh: HEFG là hình bình hành và EF ^ HE

Þ HEFG là hình chữ nhật.

17 tháng 7 2017

xét tam giác ABC có :

EA = FB (gt)

FB = FC (gt)

\(\Rightarrow EF\) là đường trung bình

\(\Rightarrow\) EF // AC và EF = \(\dfrac{1}{2}\) AC (1)

chứng minh tương tự HG là đường trung bình tam giác ADC

HG // AC và HG = \(\dfrac{1}{2}\) AC (2)

từ (1) và (2) ta suy ra EF // HG và EF = HG

\(\Rightarrow\) EFGH là hình bình hành (3)

ta có : EF // AC

EH // BD ( EH là đường trung bình tam giác ABD )

AC \(\perp\) BD ( gt )

\(\Rightarrow\) EF \(\perp\) EH

hay góc E = 90 độ (4)

từ (3) và (4) ta suy ra EFGH là hình chữ nhật


Hỏi đáp Toán
21 tháng 4 2017

Bài giải:

Ta có EB = EA, FB = FC (gt)

Nên EF là đường trung bình của ∆ABC

Do đó EF // AC

HD = HA, GD = GC

Nên HG là đường trung bình của ∆ADC

Do đó HG // AC

Suy ra EF // HG

Tương tự EH // FG

Do đó EFGH là hình bình hành.

EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH hay ˆFEHFEH^ = 900

Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.

25 tháng 10 2016

Xét tam giác ABC có: EB=EA (gt); BF=FC (gt)

\(\Rightarrow\)EF là đường trung bình của tam giác ABC

\(\Rightarrow\)EF//AC; EF=1/2AC (1)

Xét tam giác ADC có: AH=HD (gt); CG=DG (gt)

\(\Rightarrow\)HG là dường trung bình của tam giác ADC

\(\Rightarrow\)HG//AC; HG=1/2AC (2)

Từ (1) và (2) \(\Rightarrow\)EF//HG; EF=HG

\(\Rightarrow\)EFGH là hình bình hành

Ta có EH là đường trung bình của tam giác ABD

vì AE=EB; AH=HD

\(\Rightarrow\)EH//BD

mà AC\(\perp\) BD; EH=BD; EF//AC

\(\Rightarrow\)EF\(\perp\)EH hay E=\(90^0\)

Vậy EFGH là hình chữ nhật.

23 tháng 10 2016

chứng minh: EF là đương tb rồi =) EF song song vs AC và bằng một nữa AC.

tương tự chứng minh HG....

rồi +) tứ giác EFGH là hbh ( dấu hiệu 3)

mk chỉ gợi ý theess thôi. còn đâu bn tự làm nhá!

2 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

2 tháng 12 2017

Bài này mk ko bít làm nên mới hỏi mà

15 tháng 4 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ∆ ABC, ta có:

E là trung điểm của AB (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của  ∆ ABC

⇒ EF // AC và EF = 1/2 AC (tính chất đường trung bình tam giác) (1)

* Trong  ∆ DAC, ta có:

H là trung điểm của AD (gt)

G là trung điểm của DC (gt)

Nên HG là đường trung bình của  ∆ DAC.

⇒ HG // AC và HG = 1/2 AC (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Ta lại có: BD ⊥ AC (gt)

EF // AC (chứng minh trên)

Suy ra: EF ⊥ BD

Trong  ∆ ABD ta có EH là đường trung bình ⇒ EH // BD

Suy ra: EF ⊥ EH hay ∠ (FEH) = 90 0

Vậy hình bình hành EFGH là hình chữ nhật.