K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

A là phân giác góc BAC => \(\frac{DC}{DB}\)=\(\frac{AC}{AB}\)=\(\frac{16}{12}\)=\(\frac{4}{3}\)=> \(\frac{DC+DB}{DB}\)=\(\frac{4+3}{3}\)=\(\frac{7}{3}\)

=> \(\frac{BC}{DB}\)=\(\frac{7}{3}\)=> DB= \(\frac{3}{7}BC\)=\(\frac{60}{7}\)cm

=> DC = \(\frac{80}{7}\)cm.

Kẻ DE vuông góc với AC 

DE vuông góc với AC và AB vuông góc với AC => DE song song với AB 

áp dụng hệ quả của định lý Ta-let,ta có; 

\(\frac{DE}{AB}\)=\(\frac{CD}{CB}\)=\(\frac{\frac{80}{7}}{20}\)=\(\frac{4}{7}\)=> DE= \(\frac{4}{7}AB\)=\(\frac{48}{7}\)cm

Diện tích tam giác ACD:  S\(_{ACD}\)\(\frac{1}{2}DE.AC\)=\(\frac{1}{2}.\frac{48}{7}.16\)=\(\frac{384}{7}\)cm\(^2\)

Diện tích tam giác ABD:  S\(_{ABD}\)= S\(_{ABC}\)-S\(_{ACD}\)\(\frac{1}{2}AC.AB\)-\(\frac{384}{7}\)\(\frac{288}{7}\)cm\(^2\)

Tỷ lệ diện tích tam giác ABD và diện tích tam giác ACD là :\(\frac{3}{4}\)

Độ dài cạnh BC là : BC =\(\sqrt{AB^2+AC^2}\)= 20cm

BD=\(\frac{60}{7}cm\)CD =\(\frac{80}{7}cm\)

Chiều cao AH : S\(_{ABC}\)\(\frac{1}{2}AC.AB\)=\(\frac{1}{2}AH.BC\)=> AH = \(\frac{AB.AC}{BC}\)=\(\frac{12.16}{20}\)=\(\frac{48}{5}\)cm

6 tháng 2 2021

Nguyễn Thị Trang- bạn có hình không ạ?

14 tháng 3 2022

`Answer:`

Sửa đề câu a.: Tính tỉ số diện tích hai tam giác ABD và tam giác ACD nhé.

C D H A B

a. `\triangleABD` và `\triangleACD` có chung đường cao hạ từ `A`

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)

b. Áp dụng định lý Pytago: `AB^2+AC^2=BC^2<=>12^2+16^2=BC^2<=>BC^2=400<=>BC=20cm`

c. Ta có: `BC=BD+CD=20cm`

Mà `\frac{BD}{CD}=3/4=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{3+4}=\frac{20}{7}`\(\Rightarrow\hept{\begin{cases}BD=\frac{60}{7}cm\\CD=\frac{80}{7}cm\end{cases}}\)

d. \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.AH.BC\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

22 tháng 4 2017

áp dụng đinh lí pi-ta-go, ta tính được BC=20cm (1)

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)( phân giác AD)\(\Leftrightarrow\dfrac{BD}{CD}=\dfrac{12}{16}=\dfrac{3}{4}\) (2)

từ (1),(2)\(\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{60}{7}\\CD=\dfrac{80}{7}\end{matrix}\right.\)(3)

ta có \(AD=\dfrac{AB.AC}{BD}=9,6\)(4)

từ (3),(4)\(\Rightarrow\left\{{}\begin{matrix}S_{ABD}=\dfrac{288}{7}\\S_{ACD}=\dfrac{384}{7}\end{matrix}\right.\)\(\Rightarrow\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{3}{4}\)

30 tháng 4 2017

áp dụng đ/l py ta go trong tam giác vuông ABC có

BC ^2 =AB^2 +AC^2 =>12^2 + 16^2=400

=> BC =\(\sqrt{400}\)=20cm

ta có AD là phân giác của tam giác ABC

=> \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)

áp dụng tính chất tỉ lệ thức ta có

\(\dfrac{BD+DC}{DC}=\dfrac{AB+AC}{AC}hay\dfrac{20}{DC}=\dfrac{28}{16}\)

=> DC=\(\dfrac{80}{7}\)cm

=> BD=BC -DC=20-\(\dfrac{80}{7}\)=\(\dfrac{60}{7}\)cm

kẻ AH vuông góc vs BC (H thuộc BC)

gọi k là tỉ số diện tích 2 tam giác\(\dfrac{SADB}{SADC}=\dfrac{\dfrac{1}{2}\cdot AH\cdot BD}{\dfrac{1}{2}\cdot AH\cdot DC}=k^2=>k=\dfrac{BD}{DC}=\dfrac{\dfrac{60}{7}}{\dfrac{80}{7}}=\dfrac{3}{4}=>k^2=\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)

xét tam giác ABH và tam giác CBA

góc AHB=BAC(=90 độ)

góc B chung

=> tam giác ABH đồng dạng vs tam giác CBA (g.g)

=>AH/CA=AB/BC=> AH/16=12/20=> AH =9.6cm

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Vậy: BC=20cm

3 tháng 3 2018

a) A là phân giác \(\widehat{BAC}\)\(\Rightarrow\frac{DC}{DB}=\frac{AC}{AB}=\frac{16}{12}=\frac{4}{3}\Rightarrow\frac{DC+DB}{DB}=\frac{4+3}{3}=\frac{7}{3}\Rightarrow\frac{BD}{DB}=\frac{7}{3}\)

\(\Rightarrow DB=\frac{3}{7}BC=\frac{60}{7}\left(cm\right)\) và \(\Rightarrow DC=\frac{80}{7}\left(cm\right)\)

 Kẻ DE vuông góc với AC và DE vuông góc với AC ; AB vuông góc với AC => DE//AB

Áp dụng định lí Ta-let có: \(\frac{DE}{AB}=\frac{CD}{CB}=\frac{\frac{80}{7}}{20}=\frac{4}{7}\Rightarrow DE=\frac{4}{7}AB=\frac{48}{7}\left(cm\right)\)

SACD=\(\frac{1}{2}DE.AC=\frac{1}{2}\cdot\frac{48}{7}.16=\frac{384}{7}cm^2\)

SABD=SABC-SACD\(=\frac{1}{2}.AC.AB-\frac{384}{7}=\frac{288}{7}\left(cm^2\right)\)

Tỉ lệ diện tích ABD và diện tích ACD là \(\frac{3}{4}\)

b) Từ A kẻ đường cao AH ( H thuộc BC). 

 Do tam giác ABC vuông tại A

Áp dụng định lí  pi-ta-go có: 

\(BC\sqrt{AB^2+AC^2}=20cm\)

c)  Áp dụng định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức: 

\(BD^2=AB^2+AD^2-2.AB.AD.cos\left(45\right)\)

\(DC^2=AC^2+AD^2-2.AC.AD.cos\left(\text{45}\right)\left(2\right)\)

Trừ vế với vế có:\(BD^2-DC^2=AB^2-AC^2-2.AB.AD.cos\left(45\right)+2.AC.AD.cos\left(45\right)\)

\(\left(BD-DC\right)^2-DC^2=-122+4.\sqrt{\left(2\right)}.AD\)

\(400-40.DC=-122+....\)

\(\Rightarrow128-10.DC=\sqrt{\left(2\right)}.AD\left(3\right)\)

Thay (3) v ào (2): Tính được DC = \(\frac{80}{7}\) cm; 

\(BD=BC-Dc=\frac{60}{7}\left(cm\right)\)

d) Có SABC= \(AB\cdot\frac{AC}{2}=AH\cdot\frac{BC}{2}\)

Suy ra: \(AH=AB\cdot\frac{AC}{BC}=12\cdot\frac{16}{20}=9,6\left(cm\right)\)

a: BD/CD=12/16=3/4

=>S ABD/ SACD=3/4

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

AD là phân giác

=>BD/3=CD/4=20/7

=>BD=60/7cm; CD=80/7cm

\(AH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

15 tháng 5 2023

Có hình vẽ ko bạn cho mình xin với

25 tháng 3 2016

Ta có \(\frac{AB}{AC}=\frac{BD}{CD}\)

\(\frac{Sabd}{Sacd}=\frac{BD}{CD}\) vì có chung đường cao hạ từ A

còn BC thì dùng pitago là xong

25 tháng 3 2016

do \(\frac{AB}{AC}=\frac{BD}{CD}\Rightarrow\frac{AB}{AB+AC}=\frac{BD}{BC}\)

đến đây bạn chỉ cần thay số vào rồi tính là ra BD và DC