Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong ∆ ABC ta có: DE // AC (gt)
Suy ra: \(\frac{AE}{AB}=\frac{CD}{CB}\)(định lí Ta-lét) (1)
Lại có: DF // AB (gt)
Suy ra: \(\frac{AF}{AC}=\frac{BD}{BC}\)(định lí Ta-lét) (2)
Cộng trừ vế (1) và (2), ta có:
\(\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD}{BC}+\frac{BD}{BC}=\frac{BC}{BC}=1\)
Trong tam giác ABC ta có: DE // AC (gt)
Suy ra:
Lại có: DF // AB (gt)
Suy ra:
Cộng từng vế (1) và (2) ta có:
A B D C F E
Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)
Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)
Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)
a) Chứng minh:
\(\dfrac{BE}{EN}=\dfrac{BQ}{QP}=\dfrac{BQ}{MQ}=\dfrac{AB}{AC}=\dfrac{BD}{DC}\)
=> DE // NC hay DE // AC
b) Do DE // AC nên:
\(\dfrac{DE}{CN}=\dfrac{BD}{BC}\)=> DE=\(\dfrac{BD}{BC}\).CN ( 1)
Tương tự:
DF=\(\dfrac{CD}{BC}\).BM ( 2 )
Từ ( 1 ) và ( 2 ) => \(\dfrac{DE}{DF}=\dfrac{BD}{CD}.\dfrac{CN}{BM}\)
Mà: \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)và \(\dfrac{CN}{BM}=\dfrac{AC}{AB}\)
nên: \(\dfrac{DE}{DF}\)=1 => DE=DF
Ta có: góc D1=DAC=DAB=D2 => tam giác ADE= tam giác ADF
=> AE=AF