Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là trung điểm của BD
Xét ΔBDC có
K là trung điểm của BD
H là trung điểm của BC
Do đó: KH là đường trung bình của ΔBDC
Suy ra: KH//DC
hay KH//DM
Xét ΔAKH có
M là trung điểm của AH
MD//KH
Do đó: D là trung điểm của AK
Suy ra: AD=DK
mà DK=KB
nên AD=DK=KB
\(\Leftrightarrow AD=\dfrac{DK+KB}{2}=\dfrac{BD}{2}\)
hay BD=2AD
a,
\(\Delta ABC\) cân tại A có AH là đường cao nên đồng thời là trung trực
\(=>BH=HC\)
mà N là trung điểm BD\(=>BN=ND\)
=>\(HN\) là đường trung bình \(\Delta BCD\)\(=>HN//DC\)
b,từ ý a \(=>DM//HN\) mà M là trung điểm AH
=>AD=DN
mà DN=BN=>AD=DN=BN
mà AD+DN+BN=AB\(=>AD=\dfrac{1}{3}AB\)
a: Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh đáy BC
nên H là trung điểm của CB
Xét ΔBDC có
H là trung điểm của BC
N là trung điểm của BD
Do đó: HN là đường trung bình của ΔBDC
Suy ra: HN//DC và \(HN=\dfrac{DC}{2}\)
b: Xét ΔANH có
M là trung điểm của AH
MD//NH
Do đó: D là trung điểm của AN
Suy ra: AD=DN
mà DN=NB
nên AD=DN=NB
Suy ra: \(AD=\dfrac{AD+DN+NB}{3}=\dfrac{AB}{3}\)
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
a: Xét ΔBEC có
I là trung điểm của BE
M là trung điểm của BC
Do đó: IM là đường trung bình của ΔBEC
Suy ra: \(IM=\dfrac{EC}{2}\left(1\right)\)
Xét ΔDCB có
K là trung điểm của DC
M là trung điểm của BC
Do đó: KM là đường trung bình của ΔDCB
Suy ra: \(KM=\dfrac{BD}{2}\)
mà BD=CE
nên \(KM=\dfrac{CE}{2}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra IM=KM
Xét tam giác BDC có:
H là trung điểm BC (gt)
N là trung điểm BD(gt)
=> NH là đường trung bình của tam giác BDC
=> NH//DC
Mà \(M\in DC\)
=> NH//DM
Xét tam giác ANH có:
NH//DM(cmt)
Mà M là trung điểm AH(gt)
=> D là trung điểm AN
=> ND=AD
Mà ND = NB( N là trung điểm BD)
=> ND=AD=NB
=> \(AD=\dfrac{1}{3}AB\)
a: Xét ΔBDC có
H là trung điểm của BC
N là trung điểm của BD
Do đó: HN là đường trung bình của ΔBDC
Suy ra: HN//DC
hay DM//NH
Xét ΔANH có
M là trung điểm của AH
MD//NH
Do đó: D là trung điểm của AN
Suy ra: DA=DN
hay \(AD=\dfrac{1}{3}AB\)
Từ H, kẻ đường thẳng song song với DC cắt AB tại I
Xét ΔBDC có
H là trung điểm của BC(gt)
HI//CD(gt)
Do đó: I là trung điểm của BD(Định lí 1 về đường trung bình của tam giác)
Xét ΔAHI có
M là trung điểm của AH(gt)
MD//IH(gt)
Do đó: D là trung điểm của AI(Định lí 1 về đường trung bình của tam giác)
Ta có: D là trung điểm của AI(cmt)
nên AD=DI
Ta có: I là trung điểm của BD(cmt)
nên ID=BI
Ta có: AD+DI+BI=AB
nên 3AD=AB
hay \(AD=\dfrac{1}{3}AB\)
Ta có: AD+BD=AB(D nằm giữa A và B)
nên \(BD=AB-AD=AB-\dfrac{1}{3}AB=\dfrac{2}{3}AB\)
Ta có: \(\dfrac{BD}{AD}=\dfrac{2\cdot AB}{3}:\dfrac{1\cdot AB}{3}\)
\(\Leftrightarrow\dfrac{BD}{AD}=\dfrac{2\cdot AB}{AB}=2\)
nên BD=2AD