Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
A) \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
XÉT \(\Delta BDA\)VUÔNG TẠI D VÀ\(\Delta CEA\)VUÔNG TẠI E CÓ
\(BA=CA\left(GT\right)\)
\(\widehat{A}\)LÀ GÓC CHUNG
=>\(\Delta BDA\)=\(\Delta CEA\)( CẠNH HUYỀN - GÓC VUÔNG )
=> BD = CE HAI CẠNH TƯƠNG ỨNG ( ĐPCM )
B) VÌ \(\Delta BDA\)=\(\Delta CEA\)(CMT)
=> DA = EA ( HAI CẠNH TƯƠNG ỨNG ); \(\widehat{ABD}=\widehat{ACE}\)HAY \(\widehat{EBO}=\widehat{DCO}\)( HAI GÓC TƯƠNG ỨNG )
MÀ \(BE+EA=AB\)
\(CD+DA=AC\)
MÀ AB = AC (CMT); DA = EA (CMT)
=> BE = CD
XÉT \(\Delta OEB\)VÀ\(\Delta ODC\)CÓ
\(\widehat{BEO}=\widehat{CDO}=90^o\)
\(EB=DC\left(CMT\right)\)
\(\widehat{EBO}=\widehat{DCO}\)
=>\(\Delta OEB\)=\(\Delta ODC\)(G-C-G)
C) VÌ \(\Delta OEB=\Delta ODC\left(CMT\right)\)
=> OE = OD
XÉT \(\Delta AEO\)VÀ\(\Delta ADO\)CÓ
\(AE=AD\left(CMT\right)\)
\(\widehat{AEO}=\widehat{ADO}=90^o\)
OE = OD (CMT)
=>\(\Delta AEO\)=\(\Delta ADO\)(C-G-C)
=> \(\widehat{EAO}=\widehat{DAO}\)HAI GÓC TƯƠNG ỨNG
MÀ AO ẰM GIỮA AE VÀ AD
=> AO LÀ PHÂN GIÁC CỦA \(\widehat{EAD}\)
HAY AO LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔBEK vuông tại E và ΔCDK vuông tại D có
EB=DC
\(\widehat{EBK}=\widehat{DCK}\)
Do đó: ΔBEK=ΔCDK
c: Xét ΔBAK và ΔCAK có
BA=CA
AK chung
BK=CK
Do đó: ΔBAK=ΔCAK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC