K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

BÀI 2; Cho hình cân ABCD ( AB // CD ) ; góc A = 120 độ. Tính các góc còn lại của hình thang.

Giải:

Xét hình thang cân ABCD ta có:

góc BAD + góc ADC = 180 độ ( 2 góc trong cùng phía bù nhau do AB//CD)

=> 120 độ + góc ADC = 180 độ

=> góc ADC = 60 dộ

Vì tiws giác ABCD là hình thang cân

=> góc BAD = góc ABC = 120 độ

=> góc ADC = góc BCD = 60 độ

26 tháng 8 2021

Do AB // CD ( GT )

⇒^A+^C=180o

⇒2^C+^C=180o

⇒3^C=180o

⇒^C=60o

⇒  ^A = 60o * 2 = 120o

Do ABCD là hình thang cân

⇒  ^C = ^D

Mà ^C = 60o

⇒   ^D = 60o

AB // CD ⇒ ^D +  ^B = 180o

⇒ˆB=180o − 60o = 120o

Vậy   ^A  = ^B  =  120o      ;      ^C= ^D = 60o

26 tháng 8 2021

Xét 2 tam giác : Tam giác ADB và tam giác BCA có :

AB : Cạnh chung

^DAB=^CBA   (Tính chất của hình thang cân)   

AC  =  BD   ( Tính chất của hình thang cân)   

⇒    ΔADB = ΔBCA       ( c−g−c)

⇒   ^CAB   =  ^DBA    (2 góc tương ứng)

⇒   ^OAB  =  ^OBA

=> Tam giác OAB cân

=> OA = OB

=> Điều phải chứng minh

9 tháng 7 2021

Bafi1: Do AB // CD ( GT )

⇒ˆA+ˆC=180o

⇒2ˆC+ˆC=180o

⇒3ˆC=180o

⇒ˆC=60o

⇒ˆA=60o.2=120o 

Do ABCD là hình thang cân

⇒ˆC=ˆD

Mà ˆC=60o

⇒ˆD=60o

AB // CD ⇒ˆD+ˆB=180o

⇒ˆB=180o−60o=120o

Vậy ˆA=ˆB=120o;ˆC=ˆD=60o

9 tháng 7 2021

Bài 2:

Ta có; AB//CD

\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)

^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)

\(\Rightarrow\)^A= \(135^O\)

\(\Rightarrow\)^D=\(45^o\)

\(\Rightarrow B=A=135^o\)

\(\Rightarrow C=D=45^o\)

ABCD là hình thang cân

=>góc ADC=góc DCB=180-60=120 độ

AB//CD

=>góc KCB=góc CBA=60 độ

Xét tứ giác ABKH có

KH//AB

AH//BK

Do đó: ABKH là hình bình hành

=>AB=KH=8cm

Xét ΔAHD vuông tại H và ΔBKC vuông tại K có

AD=BC

góc ADH=góc BCK

Do đó: ΔAHD=ΔBKC

=>HD=KC=2cm

HD+DC+CK=HK

=>2+2+DC=8

=>DC=4(cm)

Bài 6: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK và HB=KC

Xét ΔABC có

\(\dfrac{AK}{AB}=\dfrac{AH}{HC}\)

Do đó: KH//BC

Xét tứ gác BKHC có KH//BC

nên BKHC là hình thang

mà KC=BH

nên BKHC là hình thang cân

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

Xét ΔABC có 

\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)

Do đó: HK//BC

Xét tứ giác BCHK có HK//BC

nên BCHK là hình thang

mà HB=KC(ΔAHB=ΔAKC)

nên BCHK là hình thang cân

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

GIÚP ÌNH!!! MÌNH CẦN GẤP!!!CÓ NHIỀU CÂU BẠN NÀO BIẾT BÀI NÀO THÌ GIẢI GIÚP MÌNH1. Tình tổng 4 góc ngoài tại 4 đỉnh của 1 tứ giác.2.Cho tứ giác ABCD có CB-CD, đường chéo BD là phân giác góc ADC. CM ABCD là hình thang.3.Cho hình thang ABCD có góc A= góc D= 90 độ và AB=AD=3cm, DC=6cm. TÍnh các góc còn lại của hình thang.4.Hình thang ABCD (AB//CD) có góc B trừ góc C = 24 độ, góc A = 1.5 goscD. Tính các góc hình...
Đọc tiếp

GIÚP ÌNH!!! MÌNH CẦN GẤP!!!CÓ NHIỀU CÂU BẠN NÀO BIẾT BÀI NÀO THÌ GIẢI GIÚP MÌNH

1. Tình tổng 4 góc ngoài tại 4 đỉnh của 1 tứ giác.

2.Cho tứ giác ABCD có CB-CD, đường chéo BD là phân giác góc ADC. CM ABCD là hình thang.

3.Cho hình thang ABCD có góc A= góc D= 90 độ và AB=AD=3cm, DC=6cm. TÍnh các góc còn lại của hình thang.

4.Hình thang ABCD (AB//CD) có góc B trừ góc C = 24 độ, góc A = 1.5 goscD. Tính các góc hình thang.

5.Cho tam giac ABC vuông cân tại A. Trên nửa mặt phae=ửng bờ BC không chứa A, vẽ BD vuông góc BC và BD=BC.

a) tứ giác ABCD là hình gì?

b) Biết AB=5 cm, tính CD

6. Hình thang cân ABCD (AB//CD), AB nhỏ hơn CD. KẺ 2 đường cao AH, BK.

a) Chứng minh =KC.

b)Biết AB=6cm, CD=15cm. Tính HD và CK.

7.Tính chiều cao của hình thang cân biết cạnh bên BC=25cm, các cạnh đáy AB=10cm, CD=24cm.

 

 

0
GIÚP ÌNH!!! MÌNH CẦN GẤP!!!CÓ NHIỀU CÂU BẠN NÀO BIẾT BÀI NÀO THÌ GIẢI GIÚP MÌNH1. Tình tổng 4 góc ngoài tại 4 đỉnh của 1 tứ giác.2.Cho tứ giác ABCD có CB-CD, đường chéo BD là phân giác góc ADC. CM ABCD là hình thang.3.Cho hình thang ABCD có góc A= góc D= 90 độ và AB=AD=3cm, DC=6cm. TÍnh các góc còn lại của hình thang.4.Hình thang ABCD (AB//CD) có góc B trừ góc C = 24 độ, góc A = 1.5 goscD. Tính các góc hình...
Đọc tiếp

GIÚP ÌNH!!! MÌNH CẦN GẤP!!!CÓ NHIỀU CÂU BẠN NÀO BIẾT BÀI NÀO THÌ GIẢI GIÚP MÌNH

1. Tình tổng 4 góc ngoài tại 4 đỉnh của 1 tứ giác.

2.Cho tứ giác ABCD có CB-CD, đường chéo BD là phân giác góc ADC. CM ABCD là hình thang.

3.Cho hình thang ABCD có góc A= góc D= 90 độ và AB=AD=3cm, DC=6cm. TÍnh các góc còn lại của hình thang.

4.Hình thang ABCD (AB//CD) có góc B trừ góc C = 24 độ, góc A = 1.5 goscD. Tính các góc hình thang.

5.Cho tam giac ABC vuông cân tại A. Trên nửa mặt phae=ửng bờ BC không chứa A, vẽ BD vuông góc BC và BD=BC.

a) tứ giác ABCD là hình gì?

b) Biết AB=5 cm, tính CD

6. Hình thang cân ABCD (AB//CD), AB nhỏ hơn CD. KẺ 2 đường cao AH, BK.

a) Chứng minh =KC.

b)Biết AB=6cm, CD=15cm. Tính HD và CK.

7.Tính chiều cao của hình thang cân biết cạnh bên BC=25cm, các cạnh đáy AB=10cm, CD=24cm.

2
8 tháng 6 2018

Câu 1: 

Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1,  D1

Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ

Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ

8 tháng 6 2018

720 - 360 = 360 độ