K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

Để (d1) cắt (d2) tại một điểm trên trục tung thì

\(\left\{{}\begin{matrix}m-2\ne-2\\m^2+5m+6=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne0\\m^2+5m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\left(m+5\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne0\\\left[{}\begin{matrix}m=0\\m+5=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m+5=0\)

=>m=-5

15 tháng 1 2018

a,

\(m\ne0\)

b,

\(d_1\) đi qua \(A\left(1;2\right)\Rightarrow2m+m-1=2\Leftrightarrow3m=3\Leftrightarrow m=1\)

c,

\(d_1\) cắt trục tung tại điểm có tung độ bằng \(-2\Rightarrow d_1\) đi qua điểm \(\left(0;-2\right)\Rightarrow-2=m-1\Leftrightarrow m=-1\)

d,

\(d_1\) cắt trục hoành tại điểm có hoành độ bằng \(-1\Rightarrow d_1\) đi qua điểm \(\left(-1;0\right)\Rightarrow0=-2m+m-1\Leftrightarrow-m=1\Leftrightarrow m=-1\)

e,

\(d_1\) cắt \(\Delta:y=x+1\) tại điểm thuộc trục tung \(\Rightarrow\left\{{}\begin{matrix}2m\ne1\\m-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m=2\end{matrix}\right.\Leftrightarrow m=2\)

f,

\(d_1\) cắt \(d:y=-x+3\) tại điểm thuộc trục hoành \(\Rightarrow\left\{{}\begin{matrix}2m\ne-1\\\dfrac{m-1}{2m}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{-1}{2}\\m-1=-6m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{-1}{2}\\7m=1\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{7}\) g, \(d_1\) cắt \(d_2:y=3x-2\) tại điểm có hoành độ bằng \(2\Rightarrow2m\cdot2+m-1=3\cdot2-2\Leftrightarrow5m-1=4\Leftrightarrow5m=5\Leftrightarrow m=1\)

a: Để hai đường song song thì

\(\left\{{}\begin{matrix}2m^2-m=1\\m^2+m< >2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(2m+1\right)=0\\\left(m+2\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

b: Thay x=2 vào (d1), ta đc:

\(y=2+2=4\)

Vì (d3) vuông góc với (d1) nên (d3): y=-x+b

Thay x=2 và y=4 vào (d3), ta được:

b-2=4

=>b=6

 

a: Để hai đường song song thì 3m^2+1=4m và m^2-9<>-m-5

=>(m-1)(3m-1)=0 và m^2+m-4<>0

=>m=1 hoặc m=1/3

b: Để hai đường cắt nhau thì 3m^2+1<>4m

=>m<>1 và m<>1/3

Khi m=2 thì (d1): \(y=8x-7\)

(d2): y=13x-5

Toa độ giao điểm là:

8x-7=13x-5 và y=8x-7

=>-5x=-5+7=2 và y=8x-7

=>x=-2/5 và y=-16/5-7=-16/5-35/5=-51/5

NV
14 tháng 5 2020

\(\Delta=9-4m\ge0\Rightarrow m\le\frac{9}{4}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}x_1-x_2=6\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3}{2}\\x_2=-\frac{9}{2}\end{matrix}\right.\)

\(x_1x_2=m\Rightarrow m=\frac{3}{2}.\left(-\frac{9}{2}\right)=-\frac{27}{4}\)

b/ \(\left\{{}\begin{matrix}3x_1+2x_2=20\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=26\\x_2=-29\end{matrix}\right.\)

\(\Rightarrow m=x_1x_2=-29.26=-754\)

c/ \(\left\{{}\begin{matrix}\left(x_1-x_2\right)\left(x_1+x_2\right)=34\\x_1+x_2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=-\frac{34}{3}\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\frac{43}{6}\\x_2=\frac{25}{6}\end{matrix}\right.\) \(\Rightarrow m=-\frac{1075}{36}\)

d/ \(\left\{{}\begin{matrix}x_1=2x_2\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-1\\x_1=-2\end{matrix}\right.\) \(\Rightarrow m=2\)

e/ Giống câu c, bạn tự giải