Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi s là quãng đường AB
s1,s2,s3 lần lượt là từng quãng đường mà xe di chuyển:
s1 = \(\frac{1}{3}s\)
=> s2 + s3 = \(\frac{2}{3}s\)
Thời gian xe di chuyển trong \(\frac{1}{3}\) quãng đường là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{3.40}=\frac{s}{120}\)
Gọi t' là thời gian đi ở quãng đường (\(\frac{2}{3}s\)) còn lại:
Trong \(\frac{2}{3}\) thời gian đầu, xe đi được quãng đường là
s2 = \(\frac{2}{3}t'.v_2=\frac{2}{3}.t'.45=30t'\)
Quãng đường xe đi được trong thời gian còn lại là:
s3=\(\frac{1}{3}t'.v_3=\frac{1}{3}t'.30=10t'\)
Mặt khác ta có
s2 + s3 = \(\frac{2}{3}s\)
=> 30t' + 10t' = \(\frac{2}{3}s\)
=> 40t'=\(\frac{2}{3}s\)
=> t'=\(\frac{s}{60}\)
Vận tốc trung bình của xe là:
\(v_{tb}=\frac{s}{t+t'}=\frac{s}{\frac{s}{120}+\frac{s}{60}}=\frac{1}{\frac{1}{120}+\frac{1}{60}}=40\)(km/h)
Một xe đi từ A về B, trong nửa quãng đương đầu, xe chuyển động với vận tốc v1= 40 km/h. Trên nửa quãng đường sau xe chuyển động thành 2 giai đoạn: nửa thời gian đầu vận tốc v2 = 45 km/h, thời gian còn lại đi với vận tốc v3 = 30 km/h. Tính vận tốc trung bình của xe trên cả quãng đường AB.
Đề phải như này mới đúng
ta có:
thới gian ô tô đó đi 1/5 quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{5v_1}=\frac{S}{225}\)
thời gian ô tô đi 2/5 quãng đường tiếp theo là:
\(t_2=\frac{S_2}{v_2}=\frac{2S}{5v_2}=\frac{2S}{75}\)
thời gian ô tô đi hết quãng đường còn lại là:
\(t_3=\frac{S_3}{v_3}=\frac{2S}{5v_3}=\frac{2S}{150}=\frac{S}{75}\)
vận tốc trung bình của ô tô là:
\(v_{tb}=\frac{S}{t_1+t_2+t_3}=\frac{S}{\frac{S}{225}+\frac{2S}{75}+\frac{S}{75}}\)
\(\Leftrightarrow v_{tb}=\frac{S}{S\left(\frac{1}{225}+\frac{2}{75}+\frac{1}{75}\right)}\)
\(\Leftrightarrow v_{tb}=\frac{1}{\frac{1}{225}+\frac{2}{75}+\frac{1}{75}}=22,5\) km/h
vậy vận tốc trung bình của ô tô là 22,5km/h
thời gian tàu đi với vận tốc V1=\(\dfrac{27}{90}\)=0,3h
thời gian tàu đi với vận tốc v2=\(\dfrac{90-27}{72}\)=0,875h
sau thời gian 0,875+0,3=1,175 h thì tàu đến B
Vtb=\(\dfrac{S_1+S_2}{\dfrac{S_1}{90}+\dfrac{S_2}{72}}\)=\(\dfrac{90}{\dfrac{27}{90}+\dfrac{63}{72}}\)~76,6km/h
hihi mình cũng không biết đúng hay sai nữa bạn sửa giùm mình nha
a)ta có:
thời gian ô tô đi trên quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}\)
thời gian ô tô đi trên đoạn đường còn lại là:
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}\)
vận tốc trung bình của ô tô trên toàn bộ quãng đường là:
\(v_{tb1}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{2v_1}+\frac{S}{2v_2}}=\frac{S}{S\left(\frac{1}{2v_1}+\frac{1}{2v_2}\right)}\)
\(\Leftrightarrow v_{tb1}=\frac{1}{\frac{1}{2v_1}+\frac{1}{2v_2}}=\frac{1}{\frac{v_2+v_1}{2v_1v_2}}=\frac{2v_1v_2}{v_1+v_2}\)
b)ta có:
quãng đường ô tô đi được trong nửa thời gian đầu là:
S1=v1t1=\(\frac{v_1t}{2}\)
quãng đường ô tô đi được trong thời gian còn lại là:
S2=v2t2=\(\frac{v_2t}{2}\)
vận tốc trung bình của ô tô là:
\(v_{tb2}=\frac{S_1+S_2}{t}=\frac{\frac{vt_1}{2}+\frac{v_2t}{2}}{t}\)
\(\Leftrightarrow v_{tb2}=\frac{t\left(\frac{v_1}{2}+\frac{v_2}{2}\right)}{t}=\frac{v_1+v_2}{2}\)
c)lấy vtb1-vtb2 ta có:
\(\frac{2v_1v_2}{v_1+v_2}-\frac{v_1+v_2}{2}=\frac{4v_1v_2-\left(v_1+v_2\right)^2}{2v_1+2v_2}\)
\(=\frac{4v_1v_2-\left(v_1^2+2v_1v_2+v_2^2\right)}{2v_1+2v_2}\)
\(=\frac{-v_1^2+2v_1v_2-v_2^2}{2v_1+2v_2}\)
\(=\frac{-\left(v_1-v_2\right)^2}{2v_1+2v_2}\)
mà (v1-v2)2\(\ge\) 0 nên -(v1-v2)2\(\le\) 0
mà vận tốc ko âm nên 2v1+2v2>0
từ hai điều trên nên ta suy ra vận tốc trung bình tìm được ở câu a) bé hơn câu b)
gọi s1 = s2 = s3 = s/3
ta có : v1 = s1/t1 -> t1 = s/3.v1 = s/30
v2 = s2/t2 -> t2 = s/3.v2 = s/24
v3 = s3/t3 -> t3 = s/3.v3 = s/16
Ta có công thức vận tốc trung bình
Vtb = S/t => S/ t1+t2+t3 = S/ s/30 + s/24 + s/16
= S/ 33s/240 = 1/ 33/240 = 240/33 = 7 ( xấp xỉ )
ta có:
gọi t' là tổng thời gian đi trên nửa quãng đường cuối
vận tốc trung bình của người đó là:
\(v_{tb}=\frac{S_1+S_2+S_3}{t_1+t_2+t_3}=\frac{S}{t_1+t'}\) (*)
ta lại có:
thời gian đi trên nửa quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}=\frac{S}{60}\left(1\right)\)
tổng quãng đường lúc sau là:
\(S_2+S_3=\frac{S}{2}\)
\(\Leftrightarrow v_2t_2+v_3t_3=\frac{S}{2}\)
\(\Leftrightarrow25t_2+15t_3=\frac{S}{2}\)
\(\Leftrightarrow\frac{25t'+15t'}{2}=\frac{S}{2}\)
\(\Leftrightarrow40t'=S\Rightarrow t'=\frac{S}{40}\left(2\right)\)
lấy (1) và (2) thế vào phương trình (*) ta có:
\(v_{tb}=\frac{S}{\frac{S}{60}+\frac{S}{40}}=\frac{S}{S\left(\frac{1}{60}+\frac{1}{40}\right)}=\frac{1}{\frac{1}{60}+\frac{1}{40}}=24\)
vậy vận tốc trung bình của người này là 24km/h
trong 1/2 thời gian đầu người ấy đi được:
\(S''=\frac{t}{2}.v_{tb}=\frac{v_{tb}\left(t_1+t'\right)}{2}\)
\(\Leftrightarrow S''=\frac{24\left(\frac{S}{60}+\frac{S}{40}\right)}{2}\)
\(\Leftrightarrow S''=\frac{24\left(\frac{2S+3S}{120}\right)}{2}\)
\(\Leftrightarrow S''=\frac{\left(\frac{120S}{120}\right)}{2}\)
\(\Leftrightarrow S''=\frac{S}{2}\)
mình làm vậy bạn xem đúng ko nhé
Gọi 1/3 QĐ là S
vtb=3S/(S/v1+2S/v2)=3/(1/v1+1/v2)
40=3/(1/30+2/v2)=>v2=48km/h
Bài 2:
a, Vận tốc trung bình ở đầu chặng là:
\(V_{tb_1}=\dfrac{S_1}{t_1}=\dfrac{60}{1}=60\)(km/h)
Vận tốc trung bình ở cuối chặng là:
\(V_{tb_3}=\dfrac{S_2}{t_2}=\dfrac{75}{2}=37,5\)(km/h)
Quãng đường đi giữa chặng là:
\(S_2=S-S_1-S_3=330-60-75=195\left(km\right)\)
Thời gian đi giữa chặng là:
\(t_2=12h-6h-t_1-t_2=6h-1-2=3\left(h\right)\)
Vận tốc trung bình ở giữa chặng là:
\(V_{tb_3}=\dfrac{S_2}{t_2}=\dfrac{195}{3}=65\)(km/h)
b, Vận tốc trung bình của người đó trên cả chặng đường là:
\(V_{tb}=\dfrac{S_1+S_2+S_3}{t_1+t_2+t_3}=\dfrac{330}{6}=55\)(km/h)
Bài 3:
Gọi \(\dfrac{1}{3}\) quãng đường là:S
Ta có:
\(V_{tb}=\dfrac{S+S+S}{t_1+t_2+t_3}=\dfrac{3S}{t_1+t_2+t_3}=45\)(*)
Lại có:
\(t_1=\dfrac{S}{V_1}=\dfrac{S}{40}\left(1\right)\)
\(t_2=\dfrac{S}{V_2}=\dfrac{S}{50}\left(2\right)\)
\(t_3=\dfrac{S}{V_3}\left(3\right)\)
Thay \(\left(1\right),\left(2\right),\left(3\right)\) vào(*) ta được:
\(V_{tb}=\dfrac{3S}{t_1+t_2+t_3}=\dfrac{3S}{\dfrac{S}{40}+\dfrac{S}{50}+\dfrac{S}{V_3}}=\dfrac{3}{\dfrac{1}{40}+\dfrac{1}{50}+\dfrac{1}{V_3}}=45\)
\(\Leftrightarrow\dfrac{1}{40}+\dfrac{1}{50}+\dfrac{1}{V_3}=\dfrac{3}{45}=\dfrac{1}{15}\)
\(\Leftrightarrow\dfrac{1}{V_3}=\dfrac{13}{600}\Leftrightarrow V_3=\dfrac{600}{13}\)(km/h)