Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(|x-1|+|2x-y+3|=0\)
Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)
b, \(|x-y|+|x+y-2|=0\)
Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)
c, \(|x+y-1|+|2x-3y|=0\)
Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)
Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)
\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)
a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)
b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)
\(A=1+2+2^2+2^3+...+2^{2020}\)
\(2A=2+2^2+2^3+2^4+...+2^{2021}\)
\(2A-A=\left(2+2^2+2^3+2^4+....+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-1\)
Gọi số hoa của 3 bạn lần lượt là x, y , z
Vì x,y,z TLT vớ 4,5,6
=> x/4=y/5=z/6=k
Theo t/c dãy tỉ số bằng nhau :
k= x+y+z/ 4+5+6 = 75/15=5
=> x= 5.4=20
y= 5. 5 = 25
z= 5.6=30
Vậy ..
Gọi số hoa 3 bạn hái được lần lượt là a,b,c \(\left(a,b,c\inℕ^∗\right)\)
Theo đề bài ra,ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b+c}{4+5+6}=\frac{75}{15}=6\)
\(\Rightarrow\hept{\begin{cases}a=6.4=24\\b=6.5=30\\c=6.6=36\end{cases}}\)
Vậy ....
\(\left(2.x+\frac{1}{3}\right)^2=\frac{16}{25}\)
\(\Leftrightarrow2.x+\frac{1}{3}=\pm\sqrt{\frac{16}{25}}\)
\(\Leftrightarrow2.x+\frac{1}{3}=\pm\frac{4}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}2.x+\frac{1}{3}=\frac{4}{5}\\2.x+\frac{1}{3}=-\frac{4}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2.x=\frac{7}{15}\\2.x=-\frac{17}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{30}\\x=-\frac{17}{30}\end{cases}}\)
\(\left(2.x+\frac{1}{3}\right)^2=\frac{16}{25}\)
\(\left(2.x+\frac{1}{3}\right)^2=\left(\frac{4}{5}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2.x+\frac{1}{3}=\frac{4}{5}\\2.x+\frac{1}{3}=\frac{-4}{5}\end{cases}\Rightarrow\orbr{\begin{cases}2.x=\frac{4}{5}-\frac{1}{3}\\2.x=\frac{-4}{5}-\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2.x=\frac{12}{15}-\frac{5}{15}\\2.x=\frac{-12}{15}-\frac{5}{15}\end{cases}\Rightarrow}\orbr{\begin{cases}2.x=\frac{7}{15}\\2.x=\frac{-17}{15}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{15}:2\\x=\frac{-17}{15}:2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{15}.\frac{1}{2}\\x=\frac{-17}{15}.\frac{1}{2}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{7}{30}\\x=\frac{-17}{30}\end{cases}}}\)
Vậy \(x=\frac{7}{30}\)hoặc \(x=\frac{-17}{30}\)
\(a,\left\{{}\begin{matrix}Az\perp Ox\\Ox\perp Oy\left(\widehat{xOy}=90^0\right)\end{matrix}\right.\Rightarrow Az//Oy\)
\(b,\widehat{xOm}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}\cdot90^0=45^0\left(t/c.phân.giác\right)\\ \widehat{nAx}=\dfrac{1}{2}\widehat{xAz}=\dfrac{1}{2}\cdot90^0=45^0\left(t/c.phân.giác\right)\\ \Rightarrow\widehat{xOm}=\widehat{nAx}\left(=45^0\right)\)
Mà 2 góc này ở vị trí đồng vị nên \(Om//An\)
\(A=\left(\frac{1}{10}-1\right)\left(\frac{1}{11}-1\right)\left(\frac{1}{12}-1\right)...\left(\frac{1}{99}-1\right)\left(\frac{1}{100}-1\right)\)
\(=\frac{-9}{10}.\frac{-10}{11}.\frac{-11}{12}...\frac{-98}{99}.\frac{-99}{100}\)
\(=-\frac{9.10.11....98.99}{10.11.12...99.100}=-\frac{9}{100}\)
a) Ta có: 2|x + 2| \(\ge\)0 \(\forall\)x
=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x
Hay A \(\ge\)15 \(\forall\)x
Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2
Vậy Min A = 15 tại x = -2
b) Ta có: 2(x + 5)4 \(\ge\)0 \(\forall\)x
3|x + y + 2| \(\ge\)0 \(\forall\)x;y
=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y
Hay B \(\le\)20 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)
Vậy Max B = 20 tại x = -5 và y = 3
A B C x y
Vì BC và Cx là 2 tia đối nên \(\widehat{BCA}\) và \(\widehat{ACx}\) là 2 góc kề bù
\(\Rightarrow\widehat{ACB}+\widehat{ACx}=180^o\)
\(40^o+\widehat{ACx}=180^o\)
\(\widehat{ACx}=140^o\)
b) Ta có:\(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\) (tổng 3 góc trong 1 tam giác)
\(40^o+\widehat{ABC}+70^o=180^o\)
\(\widehat{ABC}=70^o\)(1)
Vì Oy là phân giác của \(\widehat{ACx}\) nên \(\widehat{xCy}=\dfrac{\widehat{ACx}}{2}=\dfrac{140^o}{2}=70^o\)(2)
Từ (1),(2) => \(\widehat{ABC}=\widehat{xCy}\)
c)Cặp góc đồng vị là \(\widehat{ABC}\) và \(\widehat{xCy}\)
đặt \(A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{2019}\)
\(\Rightarrow2A-A=2^{2019}-2\)
\(\Rightarrow A=2^{2019}-2\)
(2^2019-2)/2 1. hiện tại không thể trả lời