Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+....+\frac{-1}{90}\)
\(=\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+...+\frac{-1}{9.10}\)
\(=\frac{4-5}{4.5}+\frac{5-6}{5.6}+\frac{6-7}{6.7}+....+\frac{9-10}{9.10}\)
\(=\frac{1}{5}-\frac{1}{4}+\frac{1}{6}-\frac{1}{5}+\frac{1}{7}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{9}\)
\(=\frac{1}{10}-\frac{1}{4}=-\frac{3}{20}\)
b)
\(2B=5+\frac{8}{11}+\frac{3}{11}+\frac{1}{15}+\frac{13}{15.2}\)
\(=5+\frac{11-3}{11}+\frac{3}{11}+\frac{1}{15}+\frac{15-2}{15.2}\)
\(=5+1-\frac{3}{11}+\frac{3}{11}+\frac{1}{15}+\frac{1}{2}-\frac{1}{15}\)
\(=5+1+\frac{1}{2}=\frac{13}{2}\Rightarrow B=\frac{13}{4}\)
2. Tính:
a, \(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
=\(\left(\dfrac{-1}{20}+\dfrac{-1}{72}\right)+\left(\dfrac{-1}{30}+\dfrac{-1}{90}\right)+\left(\dfrac{-1}{42}+\dfrac{-1}{56}\right)\)
=\(\left(\dfrac{-18}{360}+\dfrac{-5}{360}\right)+\left(\dfrac{-3}{90}+\dfrac{-1}{90}\right)+\left(\dfrac{-4}{168}+\dfrac{-3}{168}\right)\)
=\(\dfrac{-23}{360}+\dfrac{-4}{90}+\dfrac{-7}{168}\)
=\(\dfrac{-23}{360}+\dfrac{-16}{360}+\dfrac{-15}{360}\)=\(\dfrac{-54}{360}=\dfrac{-3}{20}\)
b, \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)
=\(\dfrac{5}{2}+\dfrac{4}{1}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{3}{2}+\dfrac{1}{2}.\dfrac{1}{15}+\dfrac{1}{15}.\dfrac{13}{4}\)
=\(\dfrac{5}{2}+\dfrac{1}{11}.\left(\dfrac{4}{1}+\dfrac{3}{2}\right)+\dfrac{1}{15}.\left(\dfrac{1}{2}+\dfrac{13}{4}\right)\)
=\(\dfrac{5}{2}+\dfrac{1}{11}.\dfrac{11}{2}+\dfrac{1}{15}.\dfrac{15}{4}\)
=\(\dfrac{5}{2}+\dfrac{1}{2}+\dfrac{1}{4}\)
=\(\dfrac{10}{4}+\dfrac{2}{4}+\dfrac{1}{4}\)
=\(\dfrac{13}{4}\)
3. Tìm x
a, \(\dfrac{x-5}{8}=\dfrac{18}{x-5}\)
\(\left(x-5\right).\left(x-5\right)=8.18\)
\(\left(x-5\right)^2=144\)
\(x-5=\sqrt{144}\)
\(x-5=12\)
\(x=12+5\)
\(x=17\)
b,\(\left(x-2\right)^{10}=\left(2-x\right)^8\)
\(x^{10}-2^{10}=x^8-2^8\)
\(x^{10}+x^8=2^{10}+2^8\)
\(\Rightarrow x=2\)
b: \(C=\left(\dfrac{12}{199}+\dfrac{23}{200}-\dfrac{34}{201}\right)\cdot\dfrac{3-2-1}{6}=0\)
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
D = 1 + \(\dfrac{-1}{20}\) + \(\dfrac{-1}{30}\) + \(\dfrac{-1}{42}\)+ \(\dfrac{-1}{56}\)+ \(\dfrac{-1}{72}\)+ \(\dfrac{-1}{90}\)
D = 1 - ( \(\dfrac{1}{4\times5}\) + \(\dfrac{1}{5\times6}\)+ \(\dfrac{1}{6\times7}\)+ \(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+\(\dfrac{1}{9\times10}\))
D = 1 - ( \(\dfrac{1}{4}\) - \(\dfrac{1}{10}\))
D = 1 - \(\dfrac{3}{20}\)
D = \(\dfrac{17}{20}\)
D=1+(1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10)
D=1+(1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
D=1+(1/4-1/10)
D=1+3/5
D=8/5
\(2\dfrac{2}{9}-x=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)
\(\Rightarrow2\dfrac{2}{9}-x=\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{7.8}+\dfrac{1}{8.9}\)
\(\Rightarrow2\dfrac{2}{9}-x=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow2\dfrac{2}{9}-x=\dfrac{1}{3}-\dfrac{1}{9}\)
\(\Rightarrow2\dfrac{2}{9}-x=\dfrac{2}{9}\)
\(\Rightarrow x=2\dfrac{2}{9}-\dfrac{2}{9}\)
\(\Rightarrow x=2\)
Vậy x=2
2\(\dfrac{2}{9}\) - x = \(\dfrac{1}{3\cdot4}\)+\(\dfrac{1}{4\cdot5}\)+\(\dfrac{1}{5\cdot6}\)+\(\dfrac{1}{6\cdot7}\)+\(\dfrac{1}{7\cdot8}\)+\(\dfrac{1}{8\cdot9}\)
2\(\dfrac{2}{9}\)-x = \(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)+...+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)
2\(\dfrac{2}{9}\)-x = \(\dfrac{1}{3}\)-\(\dfrac{1}{9}\)
2\(\dfrac{2}{9}\)-x = \(\dfrac{9}{27}\)- \(\dfrac{3}{27}\)
2\(\dfrac{2}{9}\)-x = \(\dfrac{2}{9}\)
\(\dfrac{20}{9}\) -x = \(\dfrac{2}{9}\)
x = \(\dfrac{20}{9}-\dfrac{2}{9}\)
x = 2
Vậy x = 2
Ta có:
\(\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)-x=\dfrac{-19}{24}\)
\(\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)-x=\dfrac{-19}{24}\)\(\left(\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+\dfrac{8-7}{7.8}+\dfrac{9-8}{8.9}+\dfrac{10-9}{9.10}\right)-x=\dfrac{-19}{24}\)
\(\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)\(\left(\dfrac{1}{3}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)
\(\dfrac{7}{30}-x=\dfrac{-19}{24}\)
\(x=\dfrac{7}{30}-\dfrac{-19}{24}\)
\(x=\dfrac{41}{40}\)
\(\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)-x=\dfrac{-19}{24}\)
\(\Leftrightarrow\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)-x=\dfrac{-19}{24}\)
\(\Leftrightarrow\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)
\(\Leftrightarrow\left(\dfrac{1}{3}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)
\(\Leftrightarrow\dfrac{7}{30}-x=\dfrac{-19}{24}\)
\(\Rightarrow x=\dfrac{7}{30}-\dfrac{-19}{24}\)
\(\Rightarrow x=\dfrac{41}{40}\)
\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(\Rightarrow B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(\Rightarrow B=\dfrac{3}{2.3}-\dfrac{2}{2.3}+\dfrac{4}{3.4}-\dfrac{3}{3.4}+...+\dfrac{10}{9.10}-\dfrac{9}{9.10}\)
\(\Rightarrow B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow B=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{4}{10}=\dfrac{2}{5}\)
\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\\ B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\\ B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\\ B=\dfrac{1}{2}-\dfrac{1}{10}\\ B=\dfrac{5}{10}-\dfrac{1}{10}\\ B=\dfrac{4}{10}\\ B=\dfrac{2}{5}\)
Lời giải:
a, Đặt \(A=\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
\(\Rightarrow A=\dfrac{-1}{4.5}+\dfrac{-1}{5.6}+\dfrac{-1}{6.7}+...+\dfrac{-1}{9.10}\)
\(\Rightarrow A=\dfrac{-1}{4}+\dfrac{1}{5}-\dfrac{1}{5}+...-\dfrac{1}{9}+\dfrac{1}{10}\)
\(\Rightarrow A=\dfrac{-1}{4}+\dfrac{1}{10}\)
\(\Rightarrow A=\dfrac{-3}{20}\)
\(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{9.10}\\ =\dfrac{-1}{4.5}+\dfrac{-1}{5.6}+\dfrac{-1}{6.7}+\dfrac{-1}{7.8}+\dfrac{-1}{8.9}+\dfrac{-1}{9.10}\)
\(=\dfrac{-1}{4}-\dfrac{-1}{5}+\dfrac{-1}{5}-\dfrac{-1}{6}+\dfrac{-1}{6}-\dfrac{-1}{7}+\dfrac{-1}{7}-\dfrac{-1}{8}+\dfrac{-1}{8}-\dfrac{-1}{9}+\dfrac{-1}{9}-\dfrac{-1}{10}\)
\(=\dfrac{-1}{4}-\dfrac{-1}{10}\\=\dfrac{-1}{4}+\dfrac{1}{10}\\=\dfrac{-5}{20}+\dfrac{2}{20}\\=\dfrac{-3}{20}\)