K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Bài 1:

Vì ƯCLN $(a,b)=20$ nên $a\vdots 20; b\vdots 20$

$\Rightarrow a-b\vdots 20$ hay $48\vdots 20$ (vô lý)

Do đó không tồn tại $a,b$ thỏa mãn điều kiện đề bài.

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Bài 2:

a) Đề sai. Bạn cho $n=3$ thì $5n+5=20, 3n+1=10$. Hai số này có ƯCLN là $10$ nên không nguyên tố cùng nhau. 

b) Gọi ƯCLN của $2n-1$ và $9n+4$ là $d$. Khi đó:

\(\left\{\begin{matrix} 2n-1\vdots d\\ 9n+4\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 18n-9\vdots d\\ 18n+8\vdots d\end{matrix}\right.\)

\(\Rightarrow (18n+8)-(18n-9)\vdots d\) hay $17\vdots d$

$\Rightarrow d=1$ hoặc $17$

 

4 tháng 1 2016

ƯCLN =1

                               tick giùm ơn nhìu

17 tháng 4 2016

gọi d là ƯCLN(2n-1;9n+4)

ta có:

[9(2n-1)]-[2(9n+4)] chia hết d

<=>[18n-9]-[18n+8] chia hết d

=>1 chia hết d

=>d=1

vậy UCLN(2n-1;9n+4)=1

17 tháng 11 2023

đr

25 tháng 11 2015

gọi UCLN(2n+1;6n+5)=d

ta có :

2n+1 chia hết cho d

=>3(2n+1) chia hết cho d

=>6n+3 chia hết cho d

6n+5 chia hết cho d

=>(6n+5)-(6n+3) chia hết cho d

=>2 chia hết cho d=>d thuộc U(2)={1;2} 

nếu d=2 thì 2n+1 ko chia hết cho d

nên d=1

=>UCLN(2n+1;6n+5)=1

 

 

1 tháng 3 2016

gọi d là UCLN(2n-1;9n+4)

<=>9(2n-1);2(9n+4) chia hết d

=>18n-1;18n+4 chia hết d

=>1 chia hết d

=>ƯCLN(2n-1;9n+4) là 1 vì n thuộc N

2 tháng 12 2015

Gọi ƯCLN(2n-1;9n+4)=d

Ta có: 2n-1 chia hết cho d

=>9(2n-1) chia hết cho d

18n-9 chia hết cho d

có 9n+4 chia hết cho d

=>2(9n+4) chia hết cho d

18n+8 chia hết cho d

=>18n-9-(18n+8) chia hết cho d

=>1 chia hết cho d hay d=1

Vậy ƯCLN(2n-1;9n+4)=1