Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(xy\) + 4\(x\) + \(y\) = 6
\(xy\) + y + 4\(x\) + 4 = 10
(\(xy\)+y) + (4\(x\) + 4) = 10
y(\(x\) + 1) + 44(\(x\) + 1) =10
(\(x\) + 1)(y + 4) = 10
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(x+1\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(x\) | -11 | -6 | -3 | -2 | 0 | 1 | 4 | 9 |
y + 4 | -1 | -2 | -5 | -10 | 10 | 5 | 2 | 1 |
y | -5 | -6 | -9 | -14 | 6 | 1 | -2 | -3 |
Từ bảng trên ta có các cặp \(x\) , y nguyên thỏa mãn đề bài là:
(\(x\); y) =(-11; -5); ( -6; -6); (-3; -9); (-2; -14); (0; 6); (1; 1); (4; -2); (9; - 3)
b, \(xy\) - 2\(x\) = y - 3
\(x\)y - y - 2\(x\) + 2 = -1
(\(x\)y - y) - (2\(x\) - 2) = -1
y(\(x\) - 1) - 2(\(x\) -1) = -1
(\(x\) - 1)(y -2) = -1
⇔ (1-\(x\))(y-2) =1
Ư(1) = {-1; 1}
Lập bảng ta có:
\(1-x\) | -1 | 1 |
\(x\) | 2 | 0 |
y- 2 | -1 | 1 |
y | 1 | 3 |
Theo bảng trên ta có các cặp \(x\), y nguyên thỏa mãn đề bài là:
(\(x\); y) = (2; 1); (0; 3)
a. (x-3)(2y+1)=7
=>(x-3)(2y+1)=1.7=7.1
Ta có bảng sau
x-3 1 7
2y+1 7 1
x 4 10
y 3 0
a)xy+3x=-2y-6
xy+3x-2y-6=0
x(y+3)-2(y+3)=0
(y+3)(x-2)=0
=>y+3=0 và x-2=0
y=-3 và x=2
a , |2x+4|+|y-6|=0
=> 2 x + 4 = 0 => x = 0
=> y - 6 = 0 => y = 6
Vậy x = 0 và y = 6
Bài 1: Ta có 5x+7=5(x-2)+8
Để 5x+7 chia hết cho x-2 thì 5(x-2) +8 chia hết cho x-2
=> 8 chia hết cho x-2
x nguyên => x-2 nguyên => x-2 thuộc Ư (8)={-8;-4;-2;-1;1;2;4;8}
ta có bảng
Bài 2:
a) xy+x=-15
<=> x(y+1)=-15
=> x, y+1 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
b) xy+2-y=9
<=> y(x-1)=7
=> y, x-1 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng
c) xy+2x+2y=-17
<=> x(y+2)+2(y+2)=-15
<=> (x+2)(y+2)=-15
<=> x+2; y+2 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng