Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\left|x+\dfrac{3}{4}\right|\le0\Rightarrow B=-\left|x+\dfrac{3}{4}\right|-3\le-3\)
\(maxB=-3\Leftrightarrow x=-\dfrac{3}{4}\)
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Vì \(\left(x-\frac{1}{5}\right)^2\ge0\).Dấu "=" xảy ra khi \(x=\frac{1}{5}\)
\(\Rightarrow A=\left(x-\frac{1}{5}\right)^2+\frac{11}{15}\ge\frac{11}{15}\)
Nên GTNN của A là \(\frac{11}{15}\) xảy ra khi \(x=\frac{1}{5}\)
A = \(|x-\dfrac{2}{3}|-\dfrac{1}{2}\)
A = \(\left[{}\begin{matrix}x-\dfrac{2}{3}-\dfrac{1}{2}\\-\left(x-\dfrac{2}{3}\right)-\dfrac{1}{2}\end{matrix}\right.\)
A = \(\left[{}\begin{matrix}x-\dfrac{1}{6}\\-x+\dfrac{2}{3}-\dfrac{1}{2}\end{matrix}\right.\)
A = \(\left[{}\begin{matrix}x-\dfrac{1}{6}\\-x+\dfrac{1}{6}\end{matrix}\right.\)
TH1: \(x-\dfrac{1}{6}\) có giá trị nhỏ nhất khi \(x-\dfrac{1}{6}=0\) với x = \(\dfrac{1}{6}\)
TH2: \(-x+\dfrac{1}{6}\) có giá trị nhỏ nhất khi \(-x+\dfrac{1}{6}=0\) với x = \(\dfrac{1}{6}\)
Vậy A đạt giá trị nhỏ nhất khi \(x=\dfrac{1}{6}\)
Em cảm ơn anh nhiều lắm ạ