Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42
ta thấy 42 = 2 x 3 x 7
A chia hết 42 suy ra A phải chia hết cho 2;3;7
mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2 (1)
số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )
ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )
suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )
A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3
A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3
suy ra A chia hết cho 3 ( 2 )
ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )
suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )
A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )
A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7
A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7
suy ra A chia hết cho 7 (3)
từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7
suy ra A chia hết cho 42 ( điều phải chứng minh )
Bài 2:
a)Ta có : \(n+3=\left(n-9\right)+12\)
\(\Rightarrow n+3⋮n-9\Leftrightarrow12⋮n-9\) ( vì n - 9 chia hết cho n - 9 )
\(\Leftrightarrow n-9\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Mà : \(n\in N\) nên \(n-9=\pm1;\pm2;\pm3;\pm4;\pm6;12\)
Ta có bảng :
n - 9 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
n | 3 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | 13 | 15 | 21 |
Vậy \(n=3;5;6;7;8;10;11;12;13;15;21\)
b) Bạn làm tương tự câu a
Bài 1:Ta có:315+314=314.3+314=314.4 chia hết cho 4
Bài 2:a,\(3A=3+3^2+3^3+...........+3^{2016}\)
\(\Rightarrow3A-A=\left(3+3^2+.......+3^{2016}\right)-\left(1+3+.......+3^{2015}\right)\)
\(\Rightarrow2A=3^{2016}-1\Rightarrow A=\frac{3^{2016}-1}{2}\)
b,Ta có:A=1+3+32+33+.............+32015
=(1+3)+(32+33)+...............+(32014+32015)
=4+32.4+................+32014.4
=4.(1+32+.........+32014) chia hết cho 4