K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

\(A=2^0+2^1+2^2+...+2^{2010}\)

\(\Rightarrow2A=1+2^2+2^3+...+2^{2011}\)

\(\Rightarrow2A-A=2011-1\)\(\Rightarrow A=B\)

21 tháng 11 2018

a, \(A=3+3^2+3^3+...+3^{54}.\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{52}+3^{53}+3^{54}^{ }3\right)\)

\(\Rightarrow3.\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{52}\left(1+3+3^2\right)\)

\(\Rightarrow13.\left(3+3^4+...+3^{52}\right)\)

\(\Rightarrow A⋮13\)

b, tương tự 

30 tháng 10 2020

Bài toán này rất khó, dành cho học sinh giỏi

30 tháng 10 2020

Gợi ý : Ghép 2 số liền nhau thành một cặp rồi đặt thừa số chung ra ngoài .

8 tháng 10 2018

1, B=3+32+33+...+390

       =(3+32+33)+(34+35+36)+...+(388+389+390)

       =3.(1+3+32)+34.(1+3+32)+...+388.(1+3+32)

       =3.(1+3+9)+34.(1+3+9)+...+388.(1+3+9)

       =3.13+34.13+388.13

       =13.(3+34+388)

Vậy tổng B=3+32+33+...+390 \(⋮\)13

8 tháng 10 2018

Bài 1 : \(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{88}+3^{89}+3^{90}\right)\)

\(B=\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{87}\left(3+3^2+3^3\right)\)

\(B=1.39+3^3.39+...+3^{87}.39\)

\(B=39\left(1+3^3+...+3^{87}\right)\)

\(B=13.3.\left(1+3^3+...+3^{87}\right)⋮13\)

Bài 2:

\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{195}+2^{196}+2^{197}\right)\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{195}\left(1+2+2^2\right)\)

\(A=7+2^3.7+...+2^{195}.7\)

\(A=7\left(1+2^3+...+2^{195}\right)⋮7\)

Vậy số dư khi chia cho 7 là 0

(Mình không chắc đúng,nếu sai thì bạn thông cảm nhé )

Chúc bạn học tốt

13 tháng 10 2018

a) \(1+2+...+2^{2011}\)

\(=2^0+2+...+2^{2010}+2^{2011}\)

\(=2^0\left(1+2\right)+...+2^{2010}\left(1+2\right)\)

\(=2^0\cdot3+...+2^{2010}\cdot3\)

\(=3\left(2^0+...+2^{2010}\right)⋮3\left(đpcm\right)\)

Các câu còn lại tương tự, dài quá

13 tháng 10 2018

a) Dãy trên có : 2012 lũy thừa và 2012 \(⋮\)2 =< có thể ghpes thành các nhóm, mỗi nhóm 2 lũy thừa.

 Ta có : 

  A  = ( 1 + 2 ) + ( 22 + 23 ) + ...+( 22010 +  22011 )

=> A = 3 + 22 . ( 1 + 2 ) +...+ 22010. ( 1 + 2 )

=> A = 3 . ( 1 + 22 +...+ 22010 ) => A chia hết cho 3

-  Để chứng minh chia hết cho 5 thì ghép 4 cái liền. ( làm tương tự trên )

b, 

Ta có : 

 B = 1 + 7 +...+ 7101

=> B = ( 1 + 72 ) + ( 7 + 73 ) +...+ ( 799 + 7101 )

=> B = 50 + 72.( 1 + 72 ) +...+ 799. ( 1 + 72 )

=> B = 50 + 72.50 +...+799.50

=> B = 50.( 1 + 7+...+ 799 ) => B chia hết cho 50

Dưới tương tự...

16 tháng 12 2018

bài 8

c) chứng minh \(\overline{aaa}⋮37\)

ta có: \(aaa=a\cdot111\)

\(=a\cdot37\cdot3⋮37\)

\(\Rightarrow aaa⋮37\)

k mk nha

k mk nha.

#mon

16 tháng 12 2018

Trả lời 1 bài cũng đc