K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

mann nào trả lời đc thui k hết 5 cái nick lun :D

22 tháng 8 2017

\(B=\left[\left(\frac{x}{y}-\frac{y}{x}\right):\left(x-y\right)-2.\left(\frac{1}{y}-\frac{1}{x}\right)\right]:\frac{x-y}{y}\)

\(=\left[\frac{x^2-y^2}{xy}.\frac{1}{x-y}-2.\frac{x-y}{xy}\right].\frac{y}{x-y}\)

\(=\left(\frac{\left(x-y\right)\left(x+y\right)}{xy.\left(x-y\right)}-\frac{2.\left(x-y\right)}{xy}\right).\frac{y}{x-y}\)

\(=\left(\frac{x+y}{xy}-\frac{2x-2y}{xy}\right).\frac{y}{x-y}=\frac{x+y-2x+2y}{xy}.\frac{y}{x-y}=\frac{y.\left(3y-x\right)}{xy.\left(x-y\right)}=\frac{3y-x}{x.\left(x-y\right)}\)

\(C=\left(\frac{x+y}{2x-2y}-\frac{x-y}{2x+2y}-\frac{2y^2}{y-x}\right):\frac{2y}{x-y}\)

\(=\left(\frac{x+y}{2.\left(x-y\right)}-\frac{x-y}{2.\left(x+y\right)}+\frac{2y^2}{x-y}\right).\frac{x-y}{2y}\)

\(=\frac{\left(x+y\right)^2-\left(x-y\right)^2+2.2y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)

\(=\frac{\left(x+y+x-y\right)\left(x+y-x+y\right)+4y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)

\(=\frac{4xy+4xy^2+4y^3}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}=\frac{4y.\left(x+xy+y^2\right).\left(x-y\right)}{4y.\left(x-y\right)\left(x+y\right)}=\frac{x+xy+y^2}{x+y}\)

\(D=3x:\left\{\frac{x^2-y^2}{x^3+y^3}.\left[\left(x-\frac{x^2+y^2}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right)\right]\right\}\)

\(=3x:\left\{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}.\left[\frac{xy-x^2-y^2}{y}:\frac{y-x}{xy}\right]\right\}\)

\(=3x:\left[\frac{x-y}{x^2-xy+y^2}.\left(\frac{xy-x^2-y^2}{y}.\frac{xy}{y-x}\right)\right]\)

\(=3x:\left(\frac{x-y}{x^2-xy+y^2}.\frac{xy.\left(x^2-xy+y^2\right)}{y.\left(x-y\right)}\right)\)

\(=3x:\frac{xy.\left(x-y\right)\left(x^2-xy+y^2\right)}{y.\left(x-y\right)\left(x^2-xy+y^2\right)}=3x:x=3\)

\(E=\frac{2}{x.\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}\)

\(=2.\left(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\right)\)

\(=2.\frac{\left(x+2\right)\left(x+3\right)+x.\left(x+3\right)+x.\left(x+1\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=2.\frac{x^2+2x+3x+6+x^2+3x+x^2+x}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=2.\frac{3x^2+9x+6}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=2.\frac{3.\left(x^2+3x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\frac{6.\left(x^2+x+2x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6.\left[x.\left(x+1\right)+2.\left(x+1\right)\right]}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\frac{6.\left(x+1\right)\left(x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6}{x.\left(x+3\right)}\)

1 tháng 12 2019

a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)

b)\(=\frac{3x\left(x+y\right)}{y}\)

c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)

\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)

1 tháng 12 2019

a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)

b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)

c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)

d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)

h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)

j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)

Câu b) bạn xem lại nhé.

Học tốt ^3^

30 tháng 12 2017

Mình làm mẫu cho 1 câu nha !

a, ĐKXĐ : x khác -3 ; -1 ; 2

Biểu thức =  2/x-2 - 2/(x+1).(x-2) . (1+x) = 2/x-2 - 2/x-2 = 0

=> Với điều kiện xác định thì giá trị biểu thức ko phụ thuộc vào biến

k mk nha

Bài 1:

a) Ta có: \(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)

\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2}{x+2y}+\frac{y}{x-2y}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{y\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x-4y+xy+2y^2+4}{\left(x-2y\right)\cdot\left(x+2y\right)}\)

b) Ta có: \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)

\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x-2y}{x^2+xy+y^2}\)

c) Ta có: \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}\)

\(=\frac{xy}{2x-y}+\frac{x^2-1}{2x-y}\)

\(=\frac{x^2+xy-1}{2x-y}\)

d) Ta có: \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}\)

\(=\frac{2\left(x^2-y^2\right)+2y^2}{x}\)

\(=\frac{2x^2-2y^2+2y^2}{x}\)

\(=\frac{2x^2}{x}=2x\)

Bài 2:

a) Ta có: \(\frac{4x+1}{2}-\frac{3x+2}{3}\)

\(=\frac{3\left(4x+1\right)}{6}-\frac{2\left(3x+2\right)}{6}\)

\(=\frac{12x+3-6x-4}{6}\)

\(=\frac{6x-1}{6}\)

b) Ta có: \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)

\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)

c) Ta có: \(\frac{x+3}{x^2+1}-\frac{1}{x^2+2}\)

\(=\frac{\left(x+3\right)\left(x^2+2\right)}{\left(x^2+1\right)\left(x^2+2\right)}-\frac{x^2+1}{\left(x^2+2\right)\left(x^2+1\right)}\)

\(=\frac{x^3+2x+3x^2+6-x^2-1}{\left(x^2+1\right)\left(x^2+2\right)}\)

\(=\frac{x^3+2x^2+2x+5}{\left(x^2+1\right)\left(x^2+2\right)}\)

e) Ta có: \(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)

\(=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x}\)

\(=\frac{3\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{2x\left(2x-1\right)}{2x\left(x+1\right)\left(x-1\right)}-\frac{2\cdot2\cdot\left(x+1\right)\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{3x-3+4x^2-2x-4\left(x^2-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{4x^2+x-3-4x^2+4}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x+1}{2x\left(x+1\right)\left(x-1\right)}=\frac{1}{2x\left(x-1\right)}\)

d) Ta có: \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)

\(=\frac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{3x+2-12x+8+10x-8}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{x+2}{\left(3x-2\right)\left(3x+2\right)}\)

f) Ta có: \(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)

\(=\frac{3x\cdot2\cdot\left(x-y\right)}{10\left(x+y\right)\left(x-y\right)}-\frac{x\cdot\left(x+y\right)}{10\left(x-y\right)\left(x+y\right)}\)

\(=\frac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}\)

\(=\frac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)

20 tháng 11 2019

a) \(\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}:\frac{10x-10y}{x^3+y^3}\)

\(=\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}.\frac{x^3+y^3}{10x-10y}\)

\(=\frac{3\left(x^2-2xy+y^2\right)}{5\left(x^2-xy+y^2\right)}.\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{10\left(x-y\right)}\)

\(=\frac{3\left(x^2-2xy+y^2\right)}{5}.\frac{x+y}{10\left(x-y\right)}\)

\(=\frac{3\left(x-y\right)^2}{5}.\frac{x+y}{10\left(x-y\right)}\)

\(=\frac{3\left(x-y\right)}{5}.\frac{x+y}{10}\)

\(=\frac{3x^2-3y^2}{50}\)

20 tháng 11 2019

c) \(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)-\frac{x^2-y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\frac{y-x}{xy}-\frac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^2}\)

\(=\frac{2}{y-x}-\frac{x+y}{x-y}\)

\(=\frac{2}{y-x}+\frac{x+y}{y-x}\)

\(=\frac{x+y+2}{y-x}\)