Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(17.8+51.4=34.4+51.4=4\left(51+34\right)=4.84=336\) \(2.2.3.5.19=\left(2.5\right).\left(3.19\right).2=10.2.57=570.2=1140\) \(54.275+825.15+275=54.275+45.275+275=275\left(54+45+1\right)=100.275=27500\) \(\frac{167.198+98}{198.168-100}=\frac{167.198+98}{198.167+198-100}=\frac{167.198+98}{167.198+98}=1\)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{2020}=1-\frac{1}{2020}=\frac{2019}{2020}\)
a) 17 x 8 + 51 x 4
= 17 x 4 x 2 + 17 x 3 x 4
= 17 x 4 x ( 2 + 3 )
= 14 x 4 x 5
= 14 x 20
= 280
b) 2 x 2 x 3 x 5 x 19
= ( 2 x 5 ) x ( 3 x 19 ) x 2
= 10 x 57 x 2
= 570 x 2
= 1140
c) 54 x 275 + 825 x 15 + 275
= 54 x 275 + 275 x 3 x 15 + 275 x 1
= 54 x 275 + 275 x 45 + 275 x 1
= 275 x ( 54 + 45 + 1 )
= 275 x 100
= 27500
d) 100 - 99 + 98 - 97 + 96 - 95 + 94 - 93 + ... + 4 - 3 + 2
= (100 - 99) + (98 - 97) + (96 - 95) + (94 - 93) + ... + (4 - 3) + 2
= (1 + 1 + ... + 1) + 2
( 49 số 1 )
= 49 + 2
= 51
k) 1,5 + 2,5 + 3,5 + 4,5 + 5,5 + 6,5 + 7,5 + 8,5
= ( 1,5 + 8,5 ) + ( 2,5 + 7,5 ) + ( 3,5 + 6,5 ) + ( 4,5 + 5,5 )
= 10 + 10 + 10 + 10
= 40
a: 43/52>26/52=1/2=60/120
b: 17/68=1/4<1/3=35/105<35/103
c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)
\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)
2018*2019<2019*2020
=>-1/2018*2019<-1/2019*2020
=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)
Dặt \(A=\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{2019.2020}\)
\(A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=\frac{1}{6}-\frac{1}{2020}\)
\(A=\frac{1007}{6060}\)
hok tốt!!
1/5x6+1/6x7+1/7x8+...+1/2019x2020
= 6/5+7/6+8/7+...+2020/2019
Rút gọn cho nhau ta còn 2020/5=404
1/5 x 6 + 1/6 x7 + 1/7 x8 + ... + 1/2019 - 1/ 2020
=1/5 -1/6 +1/6 -1/7 + 1/7 - 1/8 + ... + 1/2019 - 1/2020
Sau khi giản ước, ta còn:
1/5 - 1/2020 = 403/2020.
Đáp số: 403/2020
Xét \(\frac{1}{2020.2021}=\frac{2021-2020}{2020.2021}=\frac{2021}{2020.2021}-\frac{2020}{2020.2021}=\frac{1}{2020}-\frac{1}{2021}\)
\(=\left(1-\frac{1}{2021}\right)-\left(1-\frac{1}{2020}\right)=\frac{2020}{2021}-\frac{2019}{2020}\)
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
đặt 22018 = a ; 32019 = b ; 52020 = c
Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)
\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)
\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)
\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)
\(B< \frac{3}{4}\)
\(\Rightarrow A>1>\frac{3}{4}>B\)
Mình chỉ biết cách tính B thôi, đây nhé:
B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)
B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)
1) Ta có: \(\frac{2019}{2020}+\frac{2020}{2021}=\frac{2019}{2020}+\frac{4040}{4042}>\frac{4040}{4042}>\frac{4039}{4041}\)
Mà \(\frac{2019+2020}{2020+2021}=\frac{4039}{4041}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019+2020}{2020+2021}\)
2) BĐT cần CM tương đương:
\(\frac{a^2+b^2}{ab}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (Luôn đúng)
Dấu "=" xảy ra khi: a = b
Hoặc có thể sử dụng BĐT Cauchy nếu bạn học cao hơn
Tìm x e Z biết: 2x+1 e Ư (x+5) và x e N
giải giúp mình nhé!
mình cần gấpppppppppppppp
a=(2021-2019) x 2020/2019x2020+(2020 +1)x7+2013
=1x2020/2019x2020+2020x7+1x7+2013
=2020/(2019+7)x2020+2020
=2020/(2019+1+70) x2020
=2020/2027 x2020
=2020/4112783
Mình cảm ơn ạ nếu bạn có thời gian làm giúp mình câu b c d đc k ạ?:3