Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi số đề bài cho là aab (a khác 0; a;b là các chữ số)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 mà aab chia hết cho 3 nên a + a + b = 2a + b chia hết cho 3 (1)
Vì aab chia hết cho 4 nên ab = 8a + 2a + b chia hết cho 4
Mà 8a chia hết cho 4 nên 2a + b chia hết cho 4 (2)
Từ (1) và (2), do (3;4)=1 nên 2a + b chia hết cho 12
=> đpcm
3) Do (7;3)=1 nên (7n;3)=1
=> 7n chia 3 dư 1 hoặc 2
+ Nếu 7n chia 3 dư 1 thì 7n - 1 chia hết cho 3
=> (7n + 1)(7n - 1) chia hết cho 3
+ Nếu 7n chia 3 dư 2 thì 7n + 1 chia hết cho 3
=> (7n + 1)(7n - 1) chia hết cho 3
Vậy ta có đpcm
Bai 2
Khong mat tinh tong quat, gia su a lon hon hoac bang b
1ab1 - 1ba1 = 1000 + 100a + 10b +1 - 1000 - 100b - 10a -1
=90 (a-b) chia het cho 9
Không mất tính tổng quát, giả sử a>hơn hoặc=b ta có:
1ab1-1ba1=1000+100a+10b+1-1000-100b-10a-1=90(a-b) chia hết cho 90
a) Số chia hết cho 9 là số có tổng các chữ số của nó chia hết cho 9, tổng nhỏ nhất khác 0 chia hết cho 9 là 9.
Số có 6 chữ số bé nhất có tổng các chữ số chia hết cho 9 là: 100008
b) Tương tự câu a, số có 6 chữ số bé nhất chia hết cho 3 mà không chia hết cho 9 là: 100002
c) Từ 1 đến 1000 có số các số là: (1000 - 1) : 1 + 1 = 1000 số
Số các số chia chia hết cho 2 (tức là số chẵn) bằng số các số lẻ và bằng 1000 : 2 = 500 số
2) Nhóm 2 số hạng của A ta thấy:
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{150}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=\left(2+2^3+...+2^{119}\right).3\)
Số A chia hết cho 3 vì nó là tích của một số với số 3.
Tương tự nhóm 3 số hạng với nhau thì thi chứng minh được A chia hết cho \(1+2+2^2=7\).
a)\(7ab7-7ba7\)
\(=7007+10ab-7007-10ba\)
\(=100a+10b-100b+10a\)
\(=90a-90b\)
\(=90\cdot\left(a-b\right)\)(luôn chia hết cho 90)
vậy...
mk nhầm nha p là \(-10a\)(ở dòng thứ 3)